Skip to main content

Advertisement

Log in

Biochemical and pathological correlates of cognitive and behavioural change in DLB/PDD

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Dementia with Lewy bodies (DLB) and Parkinson’s disease dementia (PDD) are second only to Alzheimer’s disease (AD) in frequency. In particular it is evident that up to 80% of people with PD will develop dementia towards the end of their life. While the neurobiology of movement disorder has been well studied in PD, much less attention has been given to mechanisms underlying the cognitive and behavioural symptoms associated with DLB and PDD. To date, the best correlate of cognitive impairment appears to be cortical Lewy bodies; however, new emphasis has been placed on small aggregates of synuclein. Furthermore, very few studies have attempted to investigate the neurochemical correlates of behavioural disorders in DLB/PDD and whether these are similar or distinct from AD. Aggregated α-synuclein forms the core component of Lewy bodies, a major pathological feature of Parkinson’s-related conditions. The 26S proteasome is an ATP-dependent protease that catalyses the breakdown of α-synuclein. Previous studies have implicated alterations in the proteasome in PD. Furthermore, proteasome inhibitors have been reported to induce α-synuclein aggregation and Lewy body-like inclusions, resulting in neuronal loss both in vitro and in vivo. Our preliminary results indicate that selective alterations in the expression of proteosome sub-units are a feature of both DLB and PDD, while changes in activity are restricted to PDD. Depression is a common symptom in DLB/PDD, yet the evidence base for standard treatment with SSRIs is limited. In contrast to previous studies of AD, our results indicate that there is no association between depression and the 5-HT transporter, while there was a significant increase in the number of 5-HT1A receptors in those DLB/PDD patients with depression. These data may provide an insight into the lack of success of current treatments and suggest alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference list

  1. Albasanz JL, Dalfo E, Ferrer I, Martin M (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 20:685–693

    Article  PubMed  CAS  Google Scholar 

  2. Ballard C, Holmes C, McKeith I, Neill D, O’Brien J, Cairns N, Lantos P, Perry E, Ince P, Perry et al (1999) Psychiatric morbidity in dementia with Lewy bodies: a prospective clinical and neuropathological comparative study with Alzheimer’s disease. Am J Psychiatry 156:1039–1045

  3. Ballard C, Johnson M, Piggott M, Perry R, O’Brien J, Rowan E, Perry E, Lantos P, Cairns N, Holmes C (2002) A positive association between 5HT re-uptake binding sites and depression in dementia with Lewy bodies. J Affect Disord 69:219–223

    Article  PubMed  CAS  Google Scholar 

  4. Ballard C, Piggott M, Johnson M, Cairns N, Perry R, McKeith I, Jaros E, O’Brien J, Holmes C, Perry E (2000) Delusions associated with elevated muscarinic binding in dementia with Lewy bodies. Ann Neurol 48:868–876

    Article  PubMed  CAS  Google Scholar 

  5. Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28:8189–8198

    Article  PubMed  CAS  Google Scholar 

  6. Bhasin M, Rowan E, Edwards K, McKeith I (2007) Cholinesterase inhibitors in dementia with Lewy bodies: a comparative analysis. Int J Geriatr Psychiatry 22:890–895

    Article  PubMed  Google Scholar 

  7. Bronnick K, Aarsland D, Larsen JP (2005) Neuropsychiatric disturbances in Parkinson’s disease clusters in five groups with different prevalence of dementia. Acta Psychiatr Scand 112:201–207

    Article  PubMed  CAS  Google Scholar 

  8. Burton EJ, McKeith IG, Burn DJ, O’Brien JT (2005) Brain atrophy rates in Parkinson’s disease with and without dementia using serial magnetic resonance imaging. Mov Disord 20:1571–1576

    Google Scholar 

  9. Burton EJ, McKeith IG, Burn DJ, Williams ED, OBrien JT (2004) Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127:791–800

    Article  PubMed  Google Scholar 

  10. Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA (2003) Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 18:784–790

    Article  PubMed  Google Scholar 

  11. Chen CPLH, Alder JT, Bray L, Kingsbury AE, Francis PT, Foster OJF (1998) Post-synaptic 5-HT1A and 5-HT2A receptors are increased in Parkinson’s disease neocortex. Adv Serotonin Recept Res Mol Biol Signal Transduct Ther 861:288–289

    CAS  Google Scholar 

  12. Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E (2001) Nicotinic receptor abnormalities in Alzheimer’s disease. Biol Psychiatry 49:175–184

    Article  PubMed  CAS  Google Scholar 

  13. Crosby N, Deane KH, Clarke CE (2003) Amantadine in Parkinson’s disease. Cochrane Database Syst Rev CD003468

  14. Crosby NJ, Deane KH, Clarke CE (2003) Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database Syst Rev CD003467

  15. D’Amato RJ, Zweig RM, Whitehouse PJ, Wenk GL, Singer HS, Mayeux R, Price DL, Snyder SH (1987) Aminergic systems in Alzheimer’s disease and Parkinson’s disease. Ann Neurol 22:229–236

    Article  PubMed  Google Scholar 

  16. Danysz W, Parsons CG, Kornhuber J, Schmidt WJ, Quack G (1997) Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents–preclinical studies. Neurosci Biobehav Rev 21:455–468

    Article  PubMed  CAS  Google Scholar 

  17. Double KL, Halliday GM, McRitchie DA, Reid WG, Hely MA, Morris JG (1996) Regional brain atrophy in idiopathic Parkinson’s disease and diffuse Lewy body disease. Dementia 7:304–313

    PubMed  CAS  Google Scholar 

  18. Emmanouilidou E, Stefanis L, Vekrellis K (2008) Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2008.07.008

  19. Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP, Durif F, Kulisevsky J, van Laar T, Lees A, Poewe W, Robillard A, Rosa MM, Wolters E, Quarg P, Tekin S, Lane R (2004) Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med 351:2509–2518

    Article  PubMed  CAS  Google Scholar 

  20. Francis PT (2003) Glutamatergic systems in Alzheimer’s disease. Int J Geriat Psychiatry 18:S15–S21

    Article  Google Scholar 

  21. Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  PubMed  CAS  Google Scholar 

  22. Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001–2004. Mov Disord 20:523–539

    Article  PubMed  Google Scholar 

  23. Halliday GM, Li YW, Blumbergs PC, Joh TH, Cotton RG, Howe PR, Blessing WW, Geffen LB (1990) Neuropathology of immunohistochemically identified brainstem neurons in Parkinson’s disease. Ann Neurol 27:373–385

    Article  PubMed  CAS  Google Scholar 

  24. Hanagasi HA, Emre M (2005) Treatment of behavioural symptoms and dementia in Parkinson’s disease. Fundam Clin Pharmacol 19:133–146

    Article  PubMed  CAS  Google Scholar 

  25. Hansen LA, Daniel SE, Wilcock GK, Love S (1998) Frontal cortical synaptophysin in Lewy body diseases: relation to Alzheimer’s disease and dementia. J Neurol Neurosurg Psychiatry 64:653–656

    Article  PubMed  CAS  Google Scholar 

  26. Hantz P, Caradoc-Davies G, Caradoc-Davies T, Weatherall M, Dixon G (1994) Depression in Parkinson’s disease. Am J Psychiatry 151:1010–1014

    PubMed  CAS  Google Scholar 

  27. Kashani A, Betancur C, Giros B, Hirsch E, Mestikawy SE (2006) Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease. Neurobiol Aging 28:568–578

    Article  PubMed  CAS  Google Scholar 

  28. Kramer ML, Schulz-Schaeffer WJ (2007) Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 27:1405–1410

    Article  PubMed  CAS  Google Scholar 

  29. Kuhn W, Muller T, Gerlach M, Sofic E, Fuchs G, Heye N, Prautsch R, Przuntek H (1996) Depression in Parkinson’s disease: biogenic amines in CSF of “de novo” patients. J Neural Transm 103:1441–1445

    Article  PubMed  CAS  Google Scholar 

  30. Laakso MP, Partanen K, Riekkinen P, Lehtovirta M, Helkala EL, Hallikainen M, Hanninen T, Vainio P, Soininen H (1996) Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia: an MRI study. Neurology 46:678–681

    PubMed  CAS  Google Scholar 

  31. Litvan I, Mohr E, Williams J, Gomez C, Chase TN (1991) Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 54:25–29

    Article  PubMed  CAS  Google Scholar 

  32. Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN, Thomas PJ (2005) A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: implications for pathogenesis of Parkinson disease. J Biol Chem 280:22670–22678

    Article  PubMed  CAS  Google Scholar 

  33. Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E (2000) Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurol Scand Suppl 176:34–41

    Article  PubMed  CAS  Google Scholar 

  34. Mayeux R, Stern Y, Sano M, Williams JB, Cote LJ (1988) The relationship of serotonin to depression in Parkinson’s disease. Mov Disord 3:237–244

    Article  PubMed  CAS  Google Scholar 

  35. McKeith IG, Grace JB, Walker Z, Byrne EJ, Wilkinson D, Stevens T, Perry EK (2000) Rivastigmine in the treatment of dementia with lewy bodies: preliminary findings from an open trial. Int J Geriat Psychiatry 15:387–392

    Article  CAS  Google Scholar 

  36. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179:38–46

    Article  PubMed  CAS  Google Scholar 

  37. McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2:589–594

    Article  PubMed  CAS  Google Scholar 

  38. Merello M, Nouzeilles MI, Cammarota A, Leiguarda R (1999) Effect of memantine (NMDA antagonist) on Parkinson’s disease: a double-blind crossover randomized study. Clin Neuropharmacol 22:273–276

    PubMed  CAS  Google Scholar 

  39. Perry EK, Kerwin JM, Perry RH, Irving D, Blessed G, Fairbairn AF (1990) Cerebral cholinergic activity is related to the incidence of visual hallucinations in senile dementia of Lewy body type. Dementia 1:2–4

    Google Scholar 

  40. Perry EK, Marshall E, Kerwin J, Smith CJ, Jabeen S, Cheng AV, Perry RH (1990) Evidence of a monoaminergic cholinergic imbalance related to visual hallucinations in Lewy body dementia. J Neurochem 55:1454–1456

    Article  PubMed  CAS  Google Scholar 

  41. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s: possible index of early neuropathology. Neuroscience 64:385–395

    Article  PubMed  CAS  Google Scholar 

  42. Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33

    Article  PubMed  CAS  Google Scholar 

  43. Reid RT, Sabbagh MN, Corey-Bloom J, Tiraboschi P, Thal LJ (2000) Nicotinic receptor losses in dementia with Lewy bodies: comparisons with Alzheimer’s disease. Neurobiol Aging 21:741–746

    Article  CAS  Google Scholar 

  44. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348:1333–1341

    Article  PubMed  CAS  Google Scholar 

  45. Ridha BH, Josephs KA, Rossor MN (2005) Delusions and hallucinations in dementia with Lewy bodies: worsening with memantine. Neurology 65:481–482

    Article  PubMed  CAS  Google Scholar 

  46. Sabbagh MN, Hake AM, Ahmed S, Farlow MR (2005) The use of memantine in dementia with Lewy bodies. J Alzheimers Dis 7:285–289

    PubMed  Google Scholar 

  47. Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275:321–328

    Article  PubMed  CAS  Google Scholar 

  48. Scott HL, Pow DV, Tannenberg AE, Dodd PR (2002) Aberrant expression of the glutamate transporter excitatory amino acid transporter 1 (EAAT1) in Alzheimer’s disease. J Neurosci 22:(RC206):1–5

    Google Scholar 

  49. Sharp SI, Ballard CG, Ziabreva I, Perry EK, Aarsland D, Larsen JP, Francis PT (2005) Sertonin-1A receptor binding to frontal cortex in dementia with Lewy bodies and Parkinson’s disease dementia. pA2 (Ejournal of the British Pharmacological Society) v2 p65 (abstract)

  50. Sharp SI, Ballard CG, Ziabreva I, Piggott MA, Perry RH, Perry EK, Aarsland D, Ehrt U, Larsen JP, Francis PT (2008) Cortical serotonin 1A receptor levels are associated with depression in patients with dementia with Lewy bodies and Parkinson’s disease dementia. Dement Geriatr Cogn Disord 26:330–338

    Article  PubMed  CAS  Google Scholar 

  51. Shiozaki K, Iseki E, Hino H, Kosaka K (2001) Distribution of m1 muscarinic acetylcholine receptors in the hippocampus of patients with Alzheimer’s disease and dementia with Lewy bodies—an immunohistochemical study. J Neurol Sci 193:23–28

    Article  PubMed  CAS  Google Scholar 

  52. Shiozaki K, Iseki E, Uchiyama H, Watanabe Y, Haga T, Kameyama K, Ikeda T, Yamamoto T, Kosaka K (1999) Alterations of muscarinic acetylcholine receptor subtypes in diffuse lewy body disease: relation to Alzheimer’s disease. J Neurol Neurosurg Psychiatry 67:209–213

    Article  PubMed  CAS  Google Scholar 

  53. Thorns V, Mallory M, Hansen L, Masliah E (1997) Alterations in glutamate receptor 2/3 subunits and amyloid precursor protein expression during the course of Alzheimer’s disease and Lewy body variant. Acta Neuropathol (Berl) 94:539–548

    Article  CAS  Google Scholar 

  54. Tiraboschi P, Hansen LA, Alford M, Merdes A, Masliah E, Thal LJ, Corey-Bloom J (2002) Early and widespread cholinergic losses differentiate dementia with Lewy bodies from Alzheimer disease. Arch Gen Psychiatry 59:946–951

    Article  PubMed  Google Scholar 

  55. Tsuboi Y, Dickson DW (2005) Dementia with Lewy bodies and Parkinson’s disease with dementia: are they different? Parkinsonism Relat Disord 11(Suppl 1):S47–S51

    Article  PubMed  Google Scholar 

  56. Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

I have received speakers bureau honoraria from H. Lundbeck A/S; Novartis; Eisai and funds for a PhD student from H. Lundbeck A/S and Eli Lilly & Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul T. Francis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, P.T. Biochemical and pathological correlates of cognitive and behavioural change in DLB/PDD. J Neurol 256 (Suppl 3), 280–285 (2009). https://doi.org/10.1007/s00415-009-5247-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-009-5247-7

Keywords

Navigation