Skip to main content
Log in

Does zero really mean nothing?—first experiences with the new PowerQuantTM system in comparison to established real-time quantification kits

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

DNA quantification is an important step in the molecular genetic analysis of a forensic sample, hopefully providing reliable data on DNA content for a subsequent generation of reproducible STR profiles for identification. For several years, this quantification has usually been done by real-time PCR protocols and meanwhile a variety of assays are commercially available from different companies. The newest one is the PowerQuantTM assay by Promega Inc. which is advertised with the promise that a determined DNA concentration of 0 ng/μl in a forensic sample guarantees the impossibility to achieve true STR results, thus allowing to exclude such samples from STR analysis to save time and money. Thus, the goal of this study was to thoroughly verify the quantification step with regard to its suitability as a screening method. We have evaluated the precision and reliability of four different real-time PCR quantification assays by systematically testing DNA dilutions and forensic samples with various DNA contents. Subsequently, each sample was subjected to the Powerplex® ESX 17 fast kit to determine a reliable cutoff level for exclusion of definitely negative samples from STR analysis. An accurate quantification of different cell line DNA dilutions was not possible with any kit. However, at least the PowerQuantTM assay provided suitable data analyzing forensic samples, whereas in other systems up to 46 % of negative samples still displayed reliable STR analysis results. All in all, the PowerQuantTM assay represents a big step forward, but the evaluation of real-time PCR quantification results has still to be done with great care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Schwark T, Heinrich A, von Wurmb-Schwark N (2011) Genetic identification of highly putrefied bodies using DNA from soft tissues. Int J Legal Med 125:891–894

    Article  Google Scholar 

  2. Biesecker LG, Bailey-Wilson JE, Ballantyne J, Baum H, Bieber FR, Brenner C, Budowle B, Butler JM, Carmody G, Conneally PM, Duceman B, Eisenberg A, Forman L, Kidd KK, Leclair B, Niezgoda S, Parsons TJ, Pugh E, Shaler R, Sherry ST, Sozer A, Walsh A (2005) Epidemiology. DNA identifications after the 9/11 World Trade Center attack. Science 310:1122–1123

    Article  CAS  Google Scholar 

  3. Deng YJ, Li YZ, Yu XG, Li L, Wu DY, Zhou J, Man TY, Yang G, Yan JW, Cai DQ, Wang J, Yang HM, Li SB, Yu J (2005) Preliminary DNA identification for the tsunami victims in Thailand. Genomics Proteomics Bioinformatics 3:143–157

    Article  Google Scholar 

  4. Alonso A, Andelinovic S, Martin P, Sutlovic D, Erceg I, Huffine E, de Simon LF, Albarran C, Definis-Gojanovic M, Fernandez-Rodriguez A, Garcia P, Drmic I, Rezic B, Kuret S, Sancho M, Primorac D (2001) DNA typing from skeletal remains: evaluation of multiplex and megaplex STR systems on DNA isolated from bone and teeth samples. Croat Med J 42:260–266

    CAS  PubMed  Google Scholar 

  5. Butler JM, Shen Y, McCord BR (2003) The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci 48:1054–1964

    CAS  PubMed  Google Scholar 

  6. Grubwieser P, Mühlmann R, Berger B, Niederstätter H, Pavlic M, Parson W (2006) A new “miniSTR-multiplex” displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Legal Med 120:115–120

    Article  CAS  Google Scholar 

  7. von Wurmb-Schwark N, Preusse-Prange A, Heinrich A, Simeoni E, Bosch T, Schwark T (2009) A new multiplex-PCR comprising autosomal and y-specific STRs and mitochondrial DNA to analyze highly degraded material. Forensic Sci Int: Genetics 3:96–103

    Article  Google Scholar 

  8. Poetsch M, Kamphausen T, Bajanowski T, Schwark T, von Wurmb-Schwark N (2011) Powerplex® ES versus Powerplex® S5—casework testing of the new screening kit. Forensic Sci Int Genetics 5:57–63

    Article  CAS  Google Scholar 

  9. Poetsch M, Bayer K, Ergin Z, Milbrath M, Schwark T, von Wurmb-Schwark N (2011) First experiences using the new Powerplex® ESX17 and ESI17 kits in casework analysis and allele frequencies from two different regions in Germany. Int J Legal Med 125:733–739

    Article  Google Scholar 

  10. Poetsch M, Preusse-Prange A, Schwark T, von Wurmb-Schwark N (2013) The new guidelines for paternity analysis in Germany—how many STR loci are necessary when investigating duo cases? Int J Legal Med 127:731–734

    Article  Google Scholar 

  11. Rerkamnuaychoke B, Chantratita W, Jomsawat U, Thanakitgosate J, Pattanasak N, Rojanasunan P (2000) Comparison of DNA extraction from blood stain and decomposed muscle in STR polymorphism analysis. J Med Assoc Thai 83(Suppl 1):82–88

    Google Scholar 

  12. Pepinski W, Soltyszewski I, Janica J, Skawronska M, Koc-Zorawska E (2002) Comparison of five commercial kits for DNA extraction from human blood, saliva and muscle samples. Rocz Akad Med Bialymst 47:270–275

    CAS  PubMed  Google Scholar 

  13. Köchl S, Niederstätter H, Parson W (2005) DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Methods Mol Biol 297:13–30

    PubMed  Google Scholar 

  14. Marshall PL, King JL, Budowle B (2015) Utility of amplification enhancers in low copy number DNA analysis. Int J Legal Med 129:43–52

    Article  Google Scholar 

  15. Budowle B, Eisenberg AJ, van Daal A (2009) Validity of low copy number typing and applications to forensic science. Croat Med J 50:207–217

    Article  CAS  Google Scholar 

  16. McNevin D, Edson J, Robertson J, Austin JJ (2015) Reduced reaction volumes and increased Taq DNA polymerase concentration improve STR profiling outcomes from a real-world low template DNA source: telogen hairs. Forensic Sci Med Pathol 11:326–338

    Article  CAS  Google Scholar 

  17. Kamphausen T, Fandel SB, Gutmann JS, Bajanowski T, Poetsch M (2015) Everything clean? Transfer of DNA traces between textiles in the washtub. Int J Legal Med 129:709–714

    Article  Google Scholar 

  18. Helmus J, Bajanowski T, Poetsch M (2015) DNA transfer—a never ending story. A study on scenarios involving a second person as carrier. Int J Legal Med. doi:10.1007/s00414-015-1284-1

  19. Von Wurmb-Schwark N, Higuchi R, Fenech AP, Elfstroem C, Meissner C, Oehmichen M, Cortopassi GA (2002) Quantification of human mitochondrial DNA in a real time PCR. Forensic Sci Int 126:34–39

    Article  Google Scholar 

  20. Alonso A, Martin P, Albarran C, Garcia P, Garcia O, de Simon LF, Carcia-Hirschfeld J, Sancho M, de la Rúa C, Fernández-Piqueras J (2004) Real-time to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies. Forensic Sci Int 139:141–149

    Article  CAS  Google Scholar 

  21. Green RL, Roinestad IC, Boland C, Hennessy LK (2005) Developmental validation of the quantifiler real-time PCR kits for the quantification of human nuclear DNA samples. J Forensic Sci 50:809–825

    Article  CAS  Google Scholar 

  22. LaSalle HE, Duncan G, McCord B (2011) An analysis of single and multi-copy methods for DNA quantitation by real-time polymerase chain reaction. Forensic Sci Int Genet 5:185–193

    Article  CAS  Google Scholar 

  23. Thomas JT, Berlin RM, Barker JM, Dawson Cruz T (2013) Qiagen’s InvestigatorTM Quantiplex kit as a predictor of STR amplification success from low-yield DNA samples. J Forensic Sci 58:1306–1309

    Article  CAS  Google Scholar 

  24. Cupples CM, Champagne JR, Lewis KE, Cruz TD (2009) STR profiles from DNA samples with “undetected” or low quantifiler results. J Forensic Sci 54:103–107

    Article  CAS  Google Scholar 

  25. Bulander N, Rolf B (2009) Comparison of the Plexor HY System, Quantifiler and Quantifiler Duo kits using the Roche LightCycler 480 System and the ABI 7900 real time PCR instrument. Forensic Sci Int Genet Suppl 2:104–105

    Article  Google Scholar 

  26. DeSalle R, Bonwich E (1996) DNA isolation, manipulation and characterization from old tissues. Genet Eng (N Y) 18:13–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Poetsch.

Ethics declarations

All samples were obtained after informed consent and with approval of the Medical Ethics Committee at the University of Duisburg-Essen in accordance with the Declaration of Helsinki and national laws.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 200 kb)

ESM 2

(PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poetsch, M., Konrad, H., Helmus, J. et al. Does zero really mean nothing?—first experiences with the new PowerQuantTM system in comparison to established real-time quantification kits. Int J Legal Med 130, 935–940 (2016). https://doi.org/10.1007/s00414-016-1352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1352-1

Keywords

Navigation