Skip to main content
Log in

Possible application of CT morphometry of the calcaneus and talus in forensic anthropological identification

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Computed tomography (CT) data provide information for volumetric and radiographic density analysis. The present study investigated the application of virtual CT volumetry of the tarsal bones to estimation of the sex, stature, and body weight using postmortem CT (PMCT) data of forensic autopsy cases. Three-dimensional (3D) images of the bilateral foot bones of intact Japanese subjects after adolescence (age ≥15 years, n = 179, 100 males and 79 females) were reconstructed on an automated CT image analyzer system. Measured parameters were mass volume, mean CT value (HU), and total CT value of the talus and calcaneus. Mean CT values of these bones showed age-dependent decreases in elderly subjects over 60 years of age for both sexes, with significant sex-related differences especially in the elderly. The mass volumes and total CT values of the talus and calcaneus showed significant sex-related differences, and also moderate correlations with body height and weight for bilateral bones in all cases (r = 0.58–0.78, p < 0.0001); however, the correlations of these parameters of the female talus with body weight were insufficient (r = 0.41–0.61, p < 0.0001). These observations indicate the applicability of virtual CT morphometry of the talus and calcaneus using an automated analyzer to estimate the sex and stature in forensic identification; however, greater variations should be considered in body weight estimations of females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zeybek G, Ergur I, Demiroglu Z (2008) Stature and gender estimation using foot measurements. Forensic Sci Int 181:54, e1-5

    Article  PubMed  Google Scholar 

  2. Soni G, Dhall U, Chhabra S (2010) Determination of sex from femur: discriminant analysis. J Anat Soc India 59:216–221

    Article  Google Scholar 

  3. Duyar I, Pelin C (2003) Body height estimation based on tibia length in different stature groups. Am J Phys Anthropol 122:23–27

    Article  PubMed  Google Scholar 

  4. Aldegheri R, Agostini S (1993) A chart of anthropometric values. J Bone Joint Surg (Br) 75:86–88

    CAS  Google Scholar 

  5. Ozaslan A, Iscan MY, Ozaslan I, Tuğcu H, Koc S (2003) Estimation of stature from body parts. Forensic Sci Int 132:40–45

    Article  PubMed  Google Scholar 

  6. Petrovecki V, Mayer D, Slaus M, Strinović D, Skavić J (2007) Prediction of stature based on radiographic on radiographic measurements of cadaver long bones: a study of the Croatian population. J Forensic Sci 52:547–552

    Article  PubMed  Google Scholar 

  7. Rainio J, Lalu K, Ranta H, Penttilä A (2001) Radiology in forensic expert team operations. Leg Med (Tokyo) 3:34–43

    Article  CAS  Google Scholar 

  8. Hasegawa I, Uenishi K, Fukunaga T, Kimura R, Osawa M (2009) Stature estimation formulae from radiographically determined limb bone length in a modern Japanese population. Leg Med (Tokyo) 11:260–266

    Article  Google Scholar 

  9. Zaher JF, El-Ameen NFM, Seedhom AE (2011) Stature estimation using anthropometric measurements from computed tomography of metacarpal bones among Egyptian population. Egypt J For Sci 1:103–108

    Google Scholar 

  10. Giurazza F, Del Vescovo R, Schna E, Battisti S, Cazzato RL, Grasso FR, Silvestri S, Denaro V, Zobel BB (2012) Determination of stature from skeletal and skull measurements by CT scan evaluation. Forensic Sci Int 222:398, e1-9

    Article  PubMed  Google Scholar 

  11. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishiii N, Hayakawa M, Yajima D, Inokuchi G, Motomura A, Chiba F, Iwase H (2014) Stature estimation based on measurements of the sternal medullary cavity using multidetector computed tomography images of Japanese cavers. Forensic Sci Int 242:e1–e5

    Article  PubMed  Google Scholar 

  12. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Hayakawa M, Yajima D, Inokuchi G, Motomura A, Chiba F, Iwase H (2014) Stature estimation in Japanese cadavers based on pelvic measurements in three-dimensional multidetector computed tomographic images. Int J Legal Med (in press).

  13. Hishmat AM, Michiue T, Sogawa N, Oritani S, Ishikawa T, Hashem MA, Maeda H (2014) Efficacy of automated three-dimensional image reconstruction of the femur from postmortem computed tomography data in morphometry for victim identification. Leg Med (Tokyo) 16:114–117

    Article  Google Scholar 

  14. Torimitsu S, Makino Y, Saitoh H, Ishii N, Hayakawa M, Yajima D, Inokuchi G, Motomura A, Chiba F, Iwase H (2014) Stature estimation in Japanese cadavers using the sacral and coccygeal length measured with multidetector computed tomography. Leg Med (Tokyo) 16:14–19

    Article  Google Scholar 

  15. Rodríguez S, González A, Simón A, Rodríguez-Calvo MS, Febrero-Bande M, Cordeiro C, Muñoz-Barús JI (2014) The use of computerized tomography in determining stature and sex from metatarsal bones. Leg Med (Tokyo) 16:252–257

    Article  Google Scholar 

  16. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Hayakawa M, Inokuchi G, Motomura A, Chiba F, Hoshioka Y, Iwase H (2015) Stature estimation in Japanese cadavers based on the second cervical vertebra measured using multidetector computed tomography. Leg Med (Tokyo) 17:145–149

  17. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Hayakawa M, Yajima D, Inokuchi G, Motomura A, Chiba F, Iwase H (2014) Stature estimation based on radial and ulnar lengths using three-dimensional images from multidetector computed tomography in a Japanese population. Leg Med (Tokyo) 16:181–186

    Article  Google Scholar 

  18. Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Hayakawa M, Inokuchi G, Motomura A, Chiba F, Hoshioka Y, Iwase H (2015) Stature estimation in Japanese cadavers based on scapular measurements using multidetector computed tomography. Int J Legal Med 129:211–218

    Article  PubMed  Google Scholar 

  19. Walter A, Ramsthaler F, Gehl A, Birngruber CG, Krähahn BN, Obert M, Verhoff MA (2014) Geschlechtsdiskriminierung und Körperhöhenschätzung anhand des Jochbeins. Rechtsmedizin 24:159–4

    Article  Google Scholar 

  20. Verhoff MA, Ramsthaler F, Krähahn J, Deml U, Gille RJ, Grabherr S, Thali MJ, Kreutz K (2008) Digital forensic osteology—possibilities in cooperation with the Virtopsy project. Forensic Sci Int 174:152–156

    Article  PubMed  Google Scholar 

  21. Macaluso PJ Jr, Lucena J (2014) Stature estimation from radiographic sternum length in a contemporary Spanish population. Int J Legal Med 128:845–851

    Article  PubMed  Google Scholar 

  22. Djorojevic M, Roldán C, García-Parra P, Alemán I, Botella M (2014) Morphometric sex estimation from 3D computed tomography os coxae model and its validation in skeletal remains. Int J Legal Med 128:879–888

    Article  PubMed  Google Scholar 

  23. Hishmat AM, Michiue T, Sogawa N, Oritani S, Ishikawa T, Fawzy IA, Hashem MAM, Maeda H (2015) Virtual CT morphometry of lower limb long bones for estimation of the sex and stature using postmortem Japanese adult data in forensic identification. Int J Legal Med 129:1173–1182

  24. Steele DG (1976) The estimation of sex on the basis of the talus and calcaneus. Am J Phys Anthropol 45(3 pt. 2):581–588

    Article  CAS  PubMed  Google Scholar 

  25. Holland TD (1995) Brief communication: estimation of adult stature from the calcaneus and talus. Am J Phys Anthropol 96(3):315–320

    Article  CAS  PubMed  Google Scholar 

  26. Riepert T, Drechsler T, Schild H, Nafe B, Mattern R (1996) Estimation of sex on the basis of radiographs of the calcaneus. Forensic Sci Int 77(3):133–140

    Article  CAS  PubMed  Google Scholar 

  27. Bidmos MA, Dayal MR (2003) Sex determination from the talus of South African whites by discriminant function analysis. Am J Forensic Med Pathol 24(4):322–328

    Article  PubMed  Google Scholar 

  28. Bidmos M, Asala S (2005) Calcaneal measurement in estimation of stature of South African blacks. Am J Phys Anthropol 126(3):335–342

    Article  PubMed  Google Scholar 

  29. Bidmos M (2006) Adult stature reconstruction from the calcaneus of South Africans of European descent. J Clin Forensic Med 13(5):247–252

    Article  PubMed  Google Scholar 

  30. Harris SM, Case DT (2012) Sexual dimorphism in the tarsal bones: implications for sex determination. J Forensic Sci 57(2):295–305

    Article  PubMed  Google Scholar 

  31. DiMichele DL, Spradley MK (2012) Sex estimation in a modern American osteological sample using a discriminant function analysis from the calcaneus. Forensic Sci Int 221(1–3):152, e1-5

    PubMed  Google Scholar 

  32. Abd-elaleem SA, Abd-elhameed M, Ewis AA (2012) Talus measurements as a diagnostic tool for sexual dimorphism in Egyptian population. J Forensic Leg Med 19(2):70–76

    Article  PubMed  Google Scholar 

  33. Pablos A, Gómez-Olivencia A, García-Pérez A, Martínez I, Lorenzo C, Arsuaga JL (2013) From toe to head: use of robust regression methods in stature estimation based on foot remains. Forensic Sci Int 226(1–3):299, e1-7

    PubMed  Google Scholar 

  34. Navega D, Vicente R, Vieira DN, Ross AH, Cunha E (2014) Sex estimation from the tarsal bones in a Portuguese sample: a machine learning approach. Int J Legal Med. In published

  35. Mahakkanukrauh P, Praneatpolgrang S, Ruengdit S, Singsuwan P, Duangto P, Case DT (2014) Sex estimation from the talus in a Thai population. Forensic Sci Int 240:152, e1-8

    Article  PubMed  Google Scholar 

  36. Hadjidakis D, Kokkinakis E, Giannopoulos G, Merakos G, Raptis SA (1997) Bone mineral density of vertebrae, proximal femur and os calcis in normal Greek subjects as assessed by dual-energy x-ray absorptiometry: comparison with other populations. Eur J Clin Invest 27(3):219–227

    Article  CAS  PubMed  Google Scholar 

  37. Alwis G, Rosengren B, Nilsson JA, Stenevi-Lundgren S, Sundberg M, Sernbo I, Karlsson MK (2010) Normative calcaneal quantitative ultrasound data as an estimation of skeletal development in Swedish children and adolescents. Calcif Tissue Int 87(6):493–506

    Article  CAS  PubMed  Google Scholar 

  38. Singh J, Pathak RK, Chavali KH (2011) Skeletal height estimation from regression analysis of sternal lengths in a Northwest Indian population of Chandigarh region: a postmortem study. Forensic Sci Int 206:211, e1-8

    Article  PubMed  Google Scholar 

  39. Sidler M, Jackowski C, Dirnhofer R, Vock P, Thali M (2007) Use of multislice computed tomography in disaster victim identification—advantages and limitations. Forensic Sci Int 169:118–128

    Article  PubMed  Google Scholar 

  40. Mahakkanukrauh P, Khanpetch P, Prasitwattanseree S, Vichairat K, Troy Case D (2011) Stature estimation from long bone length in a Thai population. Forensic Sci Int 210:279, e1-7

    Article  PubMed  Google Scholar 

  41. Humphrey LT (1998) Growth patterns in the modern human skeleton. Am J Phys ANthropol 105:57–72

    Article  CAS  PubMed  Google Scholar 

  42. Black TK 3rd (1978) A new method for assessing the sex of fragmentary skeletal remains: femoral shaft circumference. Am J Phys Anthropol 48:227–232

    Article  PubMed  Google Scholar 

  43. Khosla S, Amin S, Orwoll E (2008) Osteoporosis in men. Endocr Rev 29:441–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Jacob M, Avadhani R, Bindhu S (2013) Maximum femoral length and bicondylar width as a tool for sexual dimorphism. Indian J Res 2:185–186

    Google Scholar 

  45. Slaus M, Bedić Z, Strinović D, Petrovečki V (2013) Sex determination by discriminant function analysis of the tibia for contemporary Croats. Forensic Sci Int 226:302, e1-4

    Article  PubMed  Google Scholar 

  46. Pandya AM, Singel TC, Akbari VJ, Dangar KP, Tank KC, Patel MP (2011) Sexual dimorphism of maximum femoral length. Natl J Med Res 1:67–70

    Google Scholar 

  47. Vedapriya KA, Rajasree TK (2013) Determination of sex based on adult fibula. Int J Biol Med Res 4:3199–3209

    Google Scholar 

  48. Mountrakis C, Eliopoulos C, Koilias CG, Manolis SK (2010) Sex determination using metatarsal osteometrics from the Athens collection. Forensic Sci Int 200:178, e1-7

    Article  PubMed  Google Scholar 

  49. Ishikawa T, Miyaishi S, Tachibana T, Yamamoto Y, Ishizu H (2003) Role of adenohypophyseal mixed cell-follicles in age estimation. Acta Med Okayama 57:83–89

    PubMed  Google Scholar 

  50. Krishan K, Kanchan T, Sharma A (2012) Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions. J Forensic Leg Med 19:211–214

    Article  PubMed  Google Scholar 

  51. Singh S, Nair SK, Anjankar V, Bankwar V, Satpathy DK, Malik Y (2013) Regression equation for estimation of femur length in central Indians from inter-trochanteric crest. J Indian Acad Forensic Med 35:223–226

    Google Scholar 

  52. Giles E, Vallandigham PH (1991) Height estimation from foot and shoeprint length. J Forensic Sci 36:1134–1151

    CAS  PubMed  Google Scholar 

  53. Trotter M, Gleser GC (1952) Estimation of stature from long bones of American Whites and Negroes. Am J Phys Anthropol 10:463–514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science and the Ministry of Education, Culture, Sports, Science, and Technology, Japan (grant no. 26860467).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaki Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inamori-Kawamoto, O., Ishikawa, T., Michiue, T. et al. Possible application of CT morphometry of the calcaneus and talus in forensic anthropological identification. Int J Legal Med 130, 575–585 (2016). https://doi.org/10.1007/s00414-015-1258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1258-3

Keywords

Navigation