Skip to main content
Log in

Analysis of 12 X-STRs in Greenlanders, Danes and Somalis using Argus X-12

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

X-chromosome markers have become a useful set of markers of choice when certain complex kinship cases need to be unravelled. The Argus X-12 kit allows the co-amplification in a single PCR reaction of 12 X-chromosome short tandem repeats located in four linkage groups. A number of 507 unrelated individuals from Greenland, Denmark and Somalia together with two generation families were typed using the Argus X-12 kit. Silent alleles for the DXS10148 and DXS10146 systems were observed in males, mostly from Somalia. High levels of intrapopulation variability and therefore high forensic parameter values were calculated for the three studied populations. The population in Greenland showed a significantly lower intrapopulation variability and a high genetic differentiation compared with 13 other populations. Significant levels of linkage disequilibrium were observed between markers belonging to the same linkage group, mainly in the populations in Greenland and Somalia. Family studies allowed the calculation of mutation and recombination frequencies. A higher male versus female mutation rate was obtained, with an average value of 3.3 × 10−3. Recombination fraction calculations performed on two generation families showed, as previously described, a not complete independence between X-chromosome linkage groups 3 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Szibor R, Krawczak M, Hering S, Edelmann J, Kuhlisch E, Kraune D (2003) Use of X-linked markers for forensic purposes. Int J Legal Med 117:67–74

    PubMed  CAS  Google Scholar 

  2. Gomes I, Prinz M, Pereira R, Meyers C, Mikulasovich RS, Amorim A, Carracedo A, Gusmão L (2007) Genetic analysis of three US population groups using an X-chromosomal STR decaplex. Int J Legal Med 121(3):198–203

    Article  PubMed  Google Scholar 

  3. Becker D, Rodig H, Augustin C, Edelmann J, Götz F, Hering S, Szibor R, Brabetz W (2008) Population genetic evaluation of eight X-chromosomal short tandem repeat loci using Mentype Argus X-8 PCR amplification kit. FSI Genetics 2:69–74

    PubMed  Google Scholar 

  4. Tomas C, Sanchez JJ, Castro JA, Børsting C, Morling N (2010) Forensic usefulness of a 25 X-chromosome single-nucleotide polymorphism marker set. Transfusion 50(10):2258–2265

    Article  PubMed  CAS  Google Scholar 

  5. Ribeiro-Rodrigues EM, Carneiro Dos Santos NP, Ribeiro Dos Santos AKC, Pereira R, Amorim A, Gusmão L, Zago MA, Batista Dos Santos SE (2009) Assessing interethnic admixture using an X-linked insertion-deletion multiplex. Am J Hum Biol 21:707–709

    Article  PubMed  Google Scholar 

  6. Edelmann J, Hering S, Augustin C, Szibor R (2009) Indel polymorphisms—an additional set of markers on the X-chromosome. FSI Genetics Supplement Series 2:510–512

    Article  Google Scholar 

  7. Poetsch M, Petersmann H, Repenning A, Lignitz E (2005) Development of two pentaplex systems with X-chromosomal STR loci and their allele frequencies in a northeast German population. Forensic Sci Int 155:71–76

    Article  PubMed  CAS  Google Scholar 

  8. Hering S, Augustin C, Edelmann J, Heidel M, Dressler J, Rodig H, Kuhlisch E, Szibor R (2006) DXS10079, DXS10074 and DXS10075 are STRs located within a 280-kb region of Xq12 and provide stable haplotypes useful for complex kinship cases. Int J Legal Med 120:337–345

    Article  PubMed  Google Scholar 

  9. Hundertmark T, Hering S, Edelmann J, Augustin C, Plate I, Szibor R (2008) The STR cluster DXS10148–DXS8378–DXS10135 provides a powerful tool for X-chromosomal haplotyping at Xp22. Int J Legal Med 122:489–495

    Article  PubMed  Google Scholar 

  10. Edelmann J, Hering S, Augustin C, Szibor R (2008) Characterisation of the STR markers DXS10146, DXS10134 and DXS10147 located within a 79.1 kb region at Xq28. FSI Genetics 2:41–46

    PubMed  Google Scholar 

  11. Mentype Argus X-12 pdf: http://www.biotype.de/fileadmin/user/Flyer/Mentype_ArgusX-12.pdf

  12. Tillmar AO, Egeland T, Lindblom B, Holmlund G, Mostad P (2010) Using X-chromosomal markers in relationship testing: calculation of likelihood ratios taking both linkage and linkage disequilibrium into account. FSI Genetics. doi:10.1016/j.fsigen.2010.11.004

  13. Excoffier L, Lischer HEL (2010) Arlequin ver. 3.5, Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  14. Edelmann J, Lutz-Bonengel S, Hering S (2011) X-chromosomal haplotype frequencies of four linkage groups using the Investigator Argus X-12 kit. FSI Genetics. doi:10.1016/j.fsigen.2011.01.001

  15. Inturri S, Menegon S, Amoroso A, Torre C, Robino C (2011) Linkage and linkage disequilibrium analysis of X-STRs in Italian families. FSI Genetics 5:152–154

    PubMed  CAS  Google Scholar 

  16. Bekada A, Benhamamouch S, Boudjema A, Fodil M, Menegon S, Torre C, Robino C (2010) Analysis of 21 X-chromosomal STRs in an Algerian population sample. Int J Legal Med 124:287–294

    Article  PubMed  Google Scholar 

  17. Hedman M, Palo JU, Sajantila A (2009) X-STR diversity patterns in the Finnish and the Somali population. FSI Genetics 3:173–178

    Google Scholar 

  18. Zalán A, Völgyi A, Jung M, Peterman O, Pamjav H (2007) Hungarian population data of four X-linked markers: DXS8378, DXS7132, HPRTB, and DXS7423. Int J Legal Med 121:74–77

    Article  PubMed  Google Scholar 

  19. Zalán A, Völgyi A, Brabetz W, Schleinitz D, Pamjav H (2008) Hungarian population data of eight X-linked markers in four linkage groups. Forensic Sci Int 175:73–78

    Article  PubMed  Google Scholar 

  20. Lim EJ, Lee HY, Sim JE, Yang WI, Shin KJ (2009) Genetic polymorphism and haplotype analysis of 4 tightly linked X-STR duos in Koreans. Croat Med J 50:305–312

    Article  PubMed  CAS  Google Scholar 

  21. Thiele K, Löffler S, Löffler J, Günthner F, Nitschke K, Edelmann J, Lessig R (2008) Population data of eight X-chromosomal STR markers in Ewe individuals from Ghana. FSI Genetics Supplement Series 1:167–169

    Article  Google Scholar 

  22. Luczak S, Rogalla U, Malyarchuk BA, Grzybowski T (2010) Diversity of 15 human X chromosome microsatellite loci in Polish populations. FSI Genetics 5:e71–77

    Google Scholar 

  23. Tie J, Uchigasaki S, Oshida S (2010) Genetic polymorphisms of eight X-chromosomal STR loci in the population of Japanese. FSI Genetics 4:e105–e108

    PubMed  Google Scholar 

  24. Luo H-B, Ye Y, Wang Y-Y, Liang W-B, Yun L-B, Liao M, Yan J, Wu J, Li Y-B, Hou Y-P (2011) Characteristics of eight X-STR loci for forensic purposes in the Chinese population. Int J Legal Med 125:127–131

    Article  PubMed  Google Scholar 

  25. Desmarais D, Zhong Y, Chakraborty R, Perreault C, Busque L (1998) Development of a highly polymorphic STR marker for identity testing purposes at the human androgen receptor gene (HUMARA). J Forensic Sci 43(5):1046–1049

    PubMed  CAS  Google Scholar 

  26. Lange K, Cantor R, Horvath S, Perola M, Sabatti C, Sinsheimer J, Sobel E (2001) MENDEL version 4.0: a complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am J Hum Genet Supplement 69:504

    Google Scholar 

  27. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62

    Google Scholar 

  28. Mertens G, Gielis M, Mommers N, Mularoni A, Lamartine J, Heylen H, Muylle L, Vandenberghe A (1999) Mutation of the repeat number of the HPRTB locus and structure of rare intermediate alleles. Int J Legal Med 112:192–194

    Article  PubMed  CAS  Google Scholar 

  29. Ardlie KG, Kruglyak L, Seielstad M (2002) Patterns of linkage disequilibrium in the human genome. Nat Rev Genet 3:299–309

    Article  PubMed  CAS  Google Scholar 

  30. Bosch E, Calafell F, Rosser ZH, Nørby S, Lynnerup N, Hurles ME, Jobling MA (2003) High level of male-biased Scandinavian admixture in Greenlandic Inuit shown by Y-chromosomal analysis. Hum Genet 112:353–363

    PubMed  Google Scholar 

  31. Hallenberg C, Tomas C, Simonsen B, Morling N (2009) Y-chromosome STR haplotypes in males from Greenland. FSI Genetics 3:e145–e146

    PubMed  CAS  Google Scholar 

  32. Sanchez JJ, Børsting C, Hernandez A, Mengel-Jørgensen J, Morling N (2004) Y chromosome SNP haplogroups in Danes, Greenlanders and Somalis. Int Congr Ser 1261:347–349

    Article  CAS  Google Scholar 

  33. Saillard J, Forster P, Lynnerup N, Bandelt H-J, Nørby S (2000) MtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 67:718–726

    Article  PubMed  CAS  Google Scholar 

  34. Helgason A, Pálsson G, Pedersen HS, Angulalik E, Gunnarsdóttir ED, Yngvadóttir B, Stefánsson K (2006) MtDNA variation in Inuti populations of Greenland and Canada: migration history and population structure. Am J Phys Anthropol 130:123–134

    Article  PubMed  Google Scholar 

  35. Gilbert MTP, Kivisild T, Grønnow B et al (2010) Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320:1787–1789

    Article  Google Scholar 

  36. Rasmussen M, Li Y, Lindgreen S et al (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762

    Article  PubMed  CAS  Google Scholar 

  37. Brinkmann B, Klintschar M, Nuehuber F, Hühne J, Rolf B (1998) Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am J Hum Genet 62:1408–1415

    Article  PubMed  CAS  Google Scholar 

  38. Rolf B, Wiegand P, Brinkmann B (2002) Somatic mutations at STR loci—a reason for three-allele pattern and mosaicism. Forensic Sci Int 126:200–202

    Article  PubMed  CAS  Google Scholar 

  39. Tillmar AO, Mostad P, Egeland T, Lindblom B, Holmlund G, Montelius K (2008) Analysis of linkage and linkage disequilibrium for eight X-STR markers. FSI Genetics 3:37–41

    Google Scholar 

Download references

Acknowledgements

We thank Marianne Olesen and Nadia Jochumsen for excellent technical assistance. Vânia Pereira has a Ph.D. scholarship from the Portuguese Foundation for Science and Technology (FCT) (grant reference SFRH/BD/70881/2010).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Tomas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

PCR and sequencing primers designed for the DXS10148 and DXS10146 systems. (PDF 41.8 kb)

Supplementary Table 2

Sequences of the DXS10148 and DXS10146 silent alleles. (PDF 43.3 kb)

Supplementary Table 3

Allele frequencies of 12 X-STRs in the Greenlandic (GRL), Danish (DK) and Somali (SOM) populations. (PDF 302 kb)

Supplementary Table 4

Haplotype frequencies for 4 X-chromosome linkage groups analysed with Argus X-12. (PDF 846 kb)

Supplementary Table 5

Pairwise F ST values calculated for 12 X-STRs. (PDF 571 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomas, C., Pereira, V. & Morling, N. Analysis of 12 X-STRs in Greenlanders, Danes and Somalis using Argus X-12. Int J Legal Med 126, 121–128 (2012). https://doi.org/10.1007/s00414-011-0609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-011-0609-y

Keywords

Navigation