Skip to main content
Log in

Mineralogical controls on garnet composition in the cratonic mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Garnet concentrates are a rich source of geochemical information on the mantle, but the mineralogical implications of wide ranging garnet compositions are poorly understood. We model chemical reactions between mantle minerals that may buffer the Ca–Cr lherzolitic garnet trend common in the lithospheric mantle. A harzburgitic trend of garnet compositions featuring a lower increase in Cr with Ca relative to the conventional lherzolitic trend is reported for the first time. Representation of garnet chemistry in terms of additive and exchange components in the Thompson space shows that the lherzolitic and harzburgitic trends are controlled by the cation exchanges MgFeAl ↔ Ca2Cr and MgFeAl4 ↔ Ca2Cr4, respectively. Various equilibrium reactions are presented to explain the trends assuming a closed or open system mantle. The compositional variability of the natural garnets from the Canastra 8 kimberlite (Brazil) is modeled by a linear system of mass balance equations. The solution returns the reaction coefficients of products (positive values) and reactants (negative values), which are then evaluated against the observed mantle mineralogy. In the isochemical mantle, the lherzolitic trend can form in the absence of clinopyroxene, but requires the presence of spinel and reflects the thickness of the spinel–garnet transition zone. This requirement contradicts observations on natural occurrences of the trend and the thermobarometry of the host peridotites. In the preferred model of a variably depleted mantle, the lherzolitic trend critically depends on the presence of clinopyroxene. The occurrence of lherzolitic garnet compositions in harzburgite can be explained by exhaustion of clinopyroxene as a result of garnet buffering. The open system behavior of the peridotitic mantle also provides a better explanation for the harzburgitic trend in garnet compositions. In an isochemical mantle, the trend can be controlled by many possible reactions, and no single mineral is essential. In the variably depleted mantle, spinel is required to make the harzburgitic trend garnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andrew J, Robinson C, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284

    Article  Google Scholar 

  • Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 11:271

    Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicate and oxides. J Geol 76:382–403

    Article  Google Scholar 

  • Boyd FR, Perason DG, Nixon PH et al (1993) Low-calcium garnet harzburgites from southern Africa: their relations to craton structure and diamond crystallization. Contrib Mineral Petrol 113(3):352–366

    Article  Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246

    Article  Google Scholar 

  • Brenker FE, Brey GP (1997) Reconstruction of the exhumation path of the Alpe Arami garnet-peridotite body from depths exceeding 160 km. J Metamorph Geol 15:581–592

    Article  Google Scholar 

  • Brey GP, Kohler T, Nickel KG (1990) Geothermobarometry in 4-phase lherzolites. 1. Experimental results from 10 to 60 Kb. J Petrol 31(6):1313–1352

    Article  Google Scholar 

  • Campos Neto MC, Soares ACP, Noce CM, Carneiro M, Alkmim FF, Ebert H (2003) Mapa Geologico de Estado de Minas Gerais, scale 1:1,000,000. CPRM, 1 sheet

  • Canil D, Wei KJ (1992) Contraints on the origin of mantle-derived low Ca garnets. Contrib Mineral Petrol 109(4):421–430

    Article  Google Scholar 

  • Carvalho JB, Leonardos OH (1996) Garnet peridotites from the Tres Ranchos IV kimberlite pipe, Alto Paranaiba Igneous Province, Brazil: geothermobarometric constraints. In: Sobolev NV, Mitchell RH (eds) Kimberlites and related rocks. Proceedings of the 6th international kimberlite conference, vol 1, pp 168–181

  • Chepurov AA, Tychkov NS, Sobolev NV (2013) Experimental modeling of the conditions of crystallization of subcalcium chromium pyropes. Dokl Earth Sci 452(2):1062–1066

    Article  Google Scholar 

  • Cookenboo H (2003) Technical description of Black Swan Resources Ltd’s diamond exploration and evaluation program, Minas Gerais, Brazil. Black Swan Resources Ltd, Vancouver

    Google Scholar 

  • Cookenboo HO (2005) Exploration for diamond-bearing kimberlite in the Brasilia Belt of Minas Gerais. Oral presentation and extended abstract. In: Almeida-Abreu PA, Abreu FR (eds) IV Simpósio Brasileiro de geologia do diamante, Sociedade Brasileira de Geologia Nucleo Minas Gerais, Boletim v. 14, pp 51–53

  • Cookenboo H, Grütter HS (2010) Mantle-derived indicator mineral compositions as applied to diamond exploration. Geochem: Explor Environ, Anal 10:81–95

    Google Scholar 

  • Cox KG, Gurney JJ, Harte B (1973) Xenoliths from the Matsoku pipe. In: Nixon PH (ed) Lesotho kimberlites. Lesotho National Development Corporation, Cape and Transvaal printers Ltd, Cape Town, pp 76–91

    Google Scholar 

  • Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and associated xenoliths. J Geol 83(5):589–607

    Article  Google Scholar 

  • Duffy TS, Anderson DL (1989) Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J Geophys Res 94:1895–1912

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG, Gaul O, Ionov DA (1998) Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications. In: Braun J, Dooley J, Goleby B, van der Hilst R, Klootwijk C (eds) Structure and evolution of the Australian continent. American Geophysical Union, Washington, pp 1–26

    Chapter  Google Scholar 

  • Griffin WL, Fisher NI, Friedman J, Ryan CG, O’Reilly SY (1999a) Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. J Petrol 40(5):679–704

    Article  Google Scholar 

  • Griffin WL, O’Reill SY, Ryan CG (1999b) The composition and origin of sub-continental lithospheric mantle. In: Fei Y, Berka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. The Geochemical Society, Houston, pp 13–45

    Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle; a re-evaluation and its tectonic implications. J Petrol 50(7):1185–1204

    Article  Google Scholar 

  • Grütter HS, Apter DB, Kong J (1999) Crust–mantle coupling: evidence from mantle-derived xenocrystic garnets. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference. Red Roof Design, Cape Town, pp 307–313

    Google Scholar 

  • Grütter HS, Latti D, Menzie A (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801–820

    Article  Google Scholar 

  • Gurney JJ (1984) A correlation between garnet and diamonds. In: Glover JE, Harris PG (eds) Kimberlite occurrence and origins: a basis for conceptual models in exploration, Publication 8. Geology Department and University Extension, University of Western Australia, Perth, pp 143–166

    Google Scholar 

  • Gurney JJ, Switzer GS (1973) The discovery of garnets closely related to diamonds in the Finsch piper, South Africa. Contrib Mineral Petrol 39:103–116

    Article  Google Scholar 

  • Gurney JJ, Zweistra P (1995) The interpretation of the major element compositions of mantle minerals in diamond exploration. J Geochem Explor 53:293–309

    Article  Google Scholar 

  • Herzberg C, Zhang JZ (1996) Melting experiments on anhydrous peridotite KLB-1: compositions of magmas in the upper mantle and transition zone. J Geophys Res: Solid Earth 101(B4):8271–8295

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383

    Article  Google Scholar 

  • Howarth GH, Barry PH, Pernet-Fisher JF et al (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184–187:209–224

    Article  Google Scholar 

  • Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the lithospheric mantle in the Siberian craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite. J Petrol 51(11):2177–2210

    Article  Google Scholar 

  • James DE, Assumpcao M (1993) Preliminary seismic studies of continental lithosphere beneath SE Brazil. EOS Trans AGU 74:426

    Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressure approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102(B1):853–874

    Article  Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77(1–4):639–646

    Article  Google Scholar 

  • Kopylova MG, Caro G (2004) Mantle xenoliths from the Southeastern Slave craton: evidence for chemical zonation in a thick, cold lithosphere. J Petrol 45(5):1045–1067

    Article  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J Petrol 40(I):79–104

    Article  Google Scholar 

  • Kopylova MG, Russel JK, Cookenboo H (2000) Garnet from Cr- and Ca-saturated mantle: implications for diamond exploration. J Geochem Explor 68:183–199

    Article  Google Scholar 

  • Kopylova MG, Nowell GM, Pearson DG, Markovic G (2009) Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112:284–295

    Article  Google Scholar 

  • Kushiro I (1994) Recent experimental studies on partial melting of mantle peridotites at high pressures using diamond aggregates. J Geol Soc Jpn 100:103–110

    Article  Google Scholar 

  • Leonardos OH, Carvalho JB, Tallarico FHB, Gibson SA, Thompson RN, Meyer HOA, Dickin AP (1993) O xenolito de granada Iherzolito de Tres Ranches 4: uma rocha matriz do diamante na provfncia magmatica cretacea do Alto Paranaíba. In: Simpósio de Geologia do Diamante, 1, Cuiaba, Anais, Universidade Federal do Mato Grosso, Special Publication 2 v. 93, pp. 3–16

  • Machado N, Noce CM, Ladeira EA, Belo de Oliveia O (1992) U-Pb geochronmology of Archean magmatism and Proterozoic metamorphism in the Quadrilatero Ferrifero, southern Sao Francisco craton, Brazil. Geol Soc Am Bull 104:1221–1227

    Article  Google Scholar 

  • MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134(4):313–324

    Article  Google Scholar 

  • McDonough WF, Rudnick RL (1998) Mineralogy and composition of the upper mantle. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy—physics and chemistry of the Earth’s deep interior, vol 37, pp 139–164

  • Miller C, Kopylova MG, Smith EM (2014) Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation. Miner Petrol 108:317–331

    Article  Google Scholar 

  • Nickel KG (1983) Petrogenasis of garnet and spinel peridotites. Unpubl. PhD Thesis, University of Tasmania, Australia

  • Nixon PH, Boyd FR (1973a) Petrogenesis of the granular and sheared peridotites. In: Nixon PH (ed) Lesotho kimberlites. Lesotho National Development Corporation, Cape and Transvaal printers Ltd, Cape Town, pp 48–56

    Google Scholar 

  • Nixon PH, Boyd FR (1973b) Deep-seated nodules. In: Nixon PH (ed) Lesotho kimberlites. Lesotho National Development Corporation, Cape and Transvaal printers Ltd, Cape Town, pp 106–109

    Google Scholar 

  • O’Neil HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its uses as a geobarometer. Contrib Mineral Petrol 77:185–194

    Article  Google Scholar 

  • Ohtani E, Maeda M (2001) Density of basaltic melt at high pressure and stability of the melt at the base of the lower mantle. Earth Planet Sci Lett 193:69–75

    Article  Google Scholar 

  • Pearson DG, Wittig N (2008) Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J Geol Soc Lond 165(5):895–914

    Article  Google Scholar 

  • Pearson N, Griffin WL, Doyle BJ, O’Reilly SY, et al (1999) Xenoliths from kimberlite pipes of the Lac de Gras area, Slave craton, Canada. In: Gurney JJ, Richardson SH (eds) Proceedings of the 7th international kimberlite conference, vol 2, pp 644–658

  • Pearson D, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) The mantle and core: treatise on geochemistry. Elsevier, Amsterdam, pp 172–260

    Google Scholar 

  • Pimentel MM, Rodrigues JB, DellaGiustina MES, Junges S, Matteini M, Armstrong R (2011) The tectonic evolution of the Neoproterozoic Brasilia Belt, central Brazil, based on SHRIMP and LA-ICPMS U–Pb sedimentary provenance data: a review. J S Am Earth Sci 31(4):345–357

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) PAP φ (ρZ) procedure for improved quantitative microanalysis. Microbeam Anal 1985:104–106

    Google Scholar 

  • Read G, Grütter H, Winter S, Luckman N, Gaunt F, Thomsen F (2004) Stratigraphic relations, kimberlite emplacement and lithospheric thermal evolution, Quiricó Basin, Minas Gerais State, Brazil. Lithos 77:803–818

    Article  Google Scholar 

  • Russell JK, Dipple GM, Lang JR, Lueck B (1999) Major element discrimination of titanian andradite from magmatic and hydrothermal environments: an examples from the Canadian cordillera. Eur J Mineral 11:919–935

    Article  Google Scholar 

  • Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure–temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res: Sol Earth 101(B3):5611–5625

    Article  Google Scholar 

  • Schmidberger SS, Francis D (1999) Nature of the mantle roots beneath the North American craton: mantle xenolith evidence from Somerset Island kimberlites. Lithos 24:195–216

    Article  Google Scholar 

  • Schulze DJ (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71(2–4):195–213

    Article  Google Scholar 

  • Shee SR, Gurney JJ, Robinson DN (1982) Two diamond-bearing peridotite xenoliths from the Finsch kimberlite, South Africa. Contrib Mineral Petrol 81:79–87

    Article  Google Scholar 

  • Skinner CP (1989) The petrology of peridotite xenoliths from the Finsch kimberlite, South Africa. S Afr J Geol 92:197–206

    Google Scholar 

  • Smyth JR, Bish DL (1988) Crystal structures and cation sites of the rock-forming minerals. Allen and Unwin, Boston

    Google Scholar 

  • Smyth JR, McCormick TC (1995) Crystallographic data for minerals. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, pp 1–17

    Chapter  Google Scholar 

  • Sobolev NV, Lavrent’ev TG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from kimberlites of Yakutia and their parageneses. Contrib Mineral Petrol 40(1):39–52

    Article  Google Scholar 

  • Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa—implications on the origin of the peridotitic upper mantle. J Geophys Res: Solid Earth 91(B9):9367–9382

    Article  Google Scholar 

  • Thomspon JB Jr (1982) Composition space: an algebraic and geometric approach. In: Ferry JM (ed) Characterization of metamorphism through mineral equilibria, reviews in mineralogy, vol 10. Mineralogical Society of America, Washington, pp 1–31

    Google Scholar 

  • Van der Meer QHA, Klaver M, Waight TE, Davies GR (2013) The provenance of sub-cratonic mantle beneath the Limpopo Mobile Belt (South Africa). Lithos 170–171:90–104

    Article  Google Scholar 

  • Viljoen F, Dobbe R, Smit B (2009) Geochemical processes in peridotite xenoliths from the Premier diamond mine, South Africa: evidence for the depletion and refertilisation of subcratonic lithosphere. Lithos 112(2):1133–1142

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Ziberna L, Klemme S, Nimis P (2013) Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling. Contrib Mineral Petrol 166(2):411–421

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible by an NSERC grant to MGK. The authors thank the Brazilian Diamonds Ltd. for the data and the permission to publish, H. Grütter and L. Ziberna for their insights on formation of cratonic garnet, D. Klimentieva for help with the thermodynamic calculations and S. Cairns and B. Elliott for help with the NWT KIMM database. The manuscript benefited from reviews of D. Canil and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kopylova.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, P.J.A., Kopylova, M., Russell, J.K. et al. Mineralogical controls on garnet composition in the cratonic mantle. Contrib Mineral Petrol 169, 13 (2015). https://doi.org/10.1007/s00410-014-1102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1102-7

Keywords

Navigation