Skip to main content
Log in

Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We analyzed mineral microinclusions in fibrous diamonds from the Wawa metaconglomerate (Superior craton) and Diavik kimberlites (Slave craton) and compared them with published compositions of large mineral inclusions in non-fibrous diamonds from these localities. The comparison, together with similar datasets available for Ekati and Koffiefontein kimberlites, suggest a general pattern of metasomatic alteration imposed on the ambient mantle by formation of fibrous diamond. Calcium and Fe enrichment of peridotitic garnet and pyroxenes and Fe enrichment of olivine associated with fibrous diamond-forming fluids contributes to refertilization of the cratonic mantle. Saline—carbonatitic—silicic fluid trapped by fibrous diamonds may represent one of the elusive agents of mantle refertilization. Calcium enrichment of peridotitic garnet and pyroxenes is expected in local mantle segments during fibrous diamond production, as Ca in the carbonatitic fluids is deposited into the surrounding mantle when oxidized carbon is reduced to diamond. Harzburgitic garnet evolves towards Ca-rich compositions even when it interacts with Ca-poor saline fluids. An unusual trend of Mg enrichment to Fo95–98 is observed in some olivine inclusions in Wawa fibrous diamonds. The trend may result from the carbonatitic composition of the fluid that promotes crystallization of magnesian olivine and preferentially oxidizes the fayalite component. We propose a generic model of fibrous and non-fibrous diamond formation from carbonatitic fluids that explains enrichment of the mantle in mafic magmaphile and incompatible elements and accounts for locally metasomatized compositions of diamond inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Araujo DP, Griffin WL, O’Reilly SY, Grant KJ, Ireland T, Holden P, van Achterbergh E (2009) Microinclusions in monocrystalline octahedral diamonds and coated diamonds from Diavik, Slave Craton: clues to diamond genesis. Lithos 112S:724–735

    Article  Google Scholar 

  • Arima M, Kozai Y, Akaishi M (2002) Diamond nucleation and growth by reduction of carbonate melts under high-pressure and high-temperature conditions. Geology 30(8):691–694

    Article  Google Scholar 

  • Aulbach S, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J Petrology 48(10):1843–1873

    Article  Google Scholar 

  • Barbosa ESR, Brod JA, Junqueira-Brod TC, Dantas EL, Cordeiro PFD, Gomide CS (2012) Bebedourite from its type area (Salitre I complex): a key petrogenetic series in the Late-Cretaceous Alto Paranaiba kamafugite-carbonatite-phoscorite association, Central Brazil. Lithos 144:56–72

    Article  Google Scholar 

  • Blondes MS, Brandon MT, Reiners PW, Page FZ, Kita NT (2012) Generation of forsteritic olivine (Fo99.8) by subsolidus oxidation in basaltic flows. J Petrology 53:971–984

    Article  Google Scholar 

  • Boyd FR, Gurney JJ (1986) Diamonds and the African lithosphere. Science 232(4749):472–477

    Article  Google Scholar 

  • Boyd SR, Mattey DP, Pillinger CT, Milledge HJ, Mendelssohn M, Seal M (1987) Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet Sci Lett 86:341–353

    Article  Google Scholar 

  • Boyd SR, Pineau F, Javoy M (1994) Modelling the growth of natural diamonds. Chem Geol 116:29–42

    Article  Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV (2011) Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem Geol 281(3–4):333–342

    Article  Google Scholar 

  • Bruce LF, Kopylova MG, Longo M, Ryder J, Dobrzhinetskaya LF (2010) Luminescence of diamonds from metamorphic rocks. Am Mineral 96:14–22

    Article  Google Scholar 

  • Bureau H, Langenhorst F, Auzende AL, Frost DJ, Esteve I, Siebert J (2012) The growth of fibrous, cloudy and polycrystalline diamonds. Geochim Cosmochim Acta 77:202–214

    Article  Google Scholar 

  • Burgess SR, Harte B (1999) Tracing lithosphere evolution through the analysis of heterogeneous G9/G10 garnets in peridotite xenoliths, I: major element chemistry. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of 7th international kimberlite conference, Red Roof Design, Cape Town, 66–80

  • Canil D, O’Neill HS, Pearson DG, Rudnick RL, McDonough WF, Carswell DA (1994) Ferric iron in peridotites and mantle oxidation-states. Earth Planet Sc Lett 123(1–4):205–220

    Article  Google Scholar 

  • Creighton S, Stachel T, McLean H, Muehlenbachs K, Simonetti A, Eichenberg D, Luth R (2008) Diamondiferous peridotitic microxenoliths from the Diavik diamond mine, NT. Contrib Mineral Petrol 155:541–554

    Article  Google Scholar 

  • De Stefano A, Kopylova MG, Cartigny P, Afanasiev V (2009) Diamonds and eclogites of the Jericho kimberlite (Northern Canada). Contrib Mineral Petrol 158:295–315

    Article  Google Scholar 

  • Donnelly CL, Stachel T, Creighton S, Muehlenbachs K, Whiteford S (2007) Diamonds and their mineral inclusions from the A154 South pipe, Diavik diamond mine, Northwest Territories, Canada. Lithos 98:160–176

    Article  Google Scholar 

  • Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos 85(1–4):48–75

    Article  Google Scholar 

  • Eggler DH, Baker DR (1982) Reduced volatiles in the systen C-O-H: implications to mantle melting, fluid formation and diamond genesis. In: Akimoto S, Maghnani M (eds) High pressure research in geophysics, vol. Center for Academic Publications, Tokyo, pp 237–250

    Chapter  Google Scholar 

  • Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies MA (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberly pipes, South Africa. In: Menzies MA, Hawkesworth C (eds) Mantle metasomatism. Academic, London, pp 221–309

    Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S:274–283

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Ann Rev Earth Planet Sci 36:389–420

    Article  Google Scholar 

  • Gaspar JC, Araújo DP, Melo MVLC (1998) Olivine in carbonatitic and silicate rocks in carbonatite complexes. Extended Abstract, 7th International Kimberlite Conference, 239–241

  • Goetze C (1975) Sheared lherzolites: from the point of view of rock mechanics. Geology 3(4):172–173

    Article  Google Scholar 

  • Graham I, Burgess JL, Bryan D, Ravenscroft PJ, Thomas E, Doyle BJ, Hopkins R, Armstrong KA (1999) Exploration history and geology of the Diavik Kimberlites, Lac de Gras, Northwest Territories, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth International Kimberlite Conference, The J.B. Dawson Volume. Red Roof Design, Cape Town, 262–279

  • Gregoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petr 142(5):603–625

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG, Gaul O, Ionov DA (1998) Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications. Geodyn Ser 26:1–26

    Article  Google Scholar 

  • Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999a) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petr 134(2–3):232–250

    Article  Google Scholar 

  • Griffin WL, Fisher NI, Friedman J, Ryan CG, O’Reilly SY (1999b) Cr-pyrope garnets in the lithospheric mantle. I. Compositional systematics and relations to tectonic setting. J Petrology 40:679–704

    Article  Google Scholar 

  • Griffin WL, O'Reilly SY, Ryan CG (1999c) The composition and origin of subcontinental lithospheric mantle. In: Fei YW, Bertka CM, Mysen BO (eds) Mantle petology: field observations and high-pressure experimentation: a tribute to Francis F. Boyd. Geochem Soc, 13–45

  • Griffin WL, O’Reilly SY, Afonso JC, Begg GC (2009) The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrology 50:1185–1204

    Article  Google Scholar 

  • Grutter H, Gurney JJ, Menzies A, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857

    Article  Google Scholar 

  • Guarino V, Azzone RG, Brotzu P, Gomes CD, Melluso L, Morbidelli L, Ruberti E, Tassinari CCG, Brilli M (2012) Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema So Paulo State, Brazil. Mineral Petrol 104(1–2):43–61

    Article  Google Scholar 

  • Gurney JJ, Zweistra P (1995) The interpretation of the major-element compositions of mantle minerals in diamond exploration. J Geochem Explor 53(1–3):293–309

    Article  Google Scholar 

  • Guzmics T, Mitchell RH, Szabo C, Berkesi M, Milke R, Abart R (2011) Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contrib Miner Petrol 161(2):177–196

    Article  Google Scholar 

  • Harte B, Hawkesworth CJ (1989) Mantle domains and mantle xenoliths. Spec Publ Geol Soc Aust 14(2):649–686

    Google Scholar 

  • Hawkesworth CJ, Erlank AJ, Kempton PD, Waters FG (1990) Mantle metasomatism: isotope and trace-element trends in xenoliths from Kimberly, South Africa. Chem Geol 85:19–34

    Article  Google Scholar 

  • Hills DV, Haggerty SE (1989) Petrochemistry of eclogites from the Koidu Kimberlite Complex, Sierra Leone. Contrib Mineral Petr 103(4):397–422

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2001) Brine inclusions in diamonds: a new upper mantle fluid. Earth Planet Sci Lett 187(3–4):323–332

    Article  Google Scholar 

  • Izraeli ES, Harris JW, Navon O (2004) Fluid and mineral inclusions in cloudy diamonds from Koffiefontein, South Africa. Geoch Cosmoch Acta 68:2561–2575

    Article  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Article  Google Scholar 

  • Klein-Ben David O, Izraeli ES, Hauri E, Navon O (2004) Mantle fluid evolution- a tale of one diamond. Lithos 77:243–253

    Article  Google Scholar 

  • Klein-Ben David O, Wirth R, Navon O (2006) TEM imaging and analysis of microinclusions in diamonds: a close look at diamond-growing fluids. Am Miner 91:353–365

    Article  Google Scholar 

  • Klein-Ben David O, Logvinova AM, Schrauder M, Spetius ZV, Weiss Y, Hauri EH, Kaminsky FV, Sobolev NV, Navon O (2009) High-Mg carbonatitic microinclusions in some Yakutian diamonds—a new type of diamond-forming fluid. Lithos 112(S2):648–659

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Gunther D (2000) Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatized peridotites and MARID-type xenoliths. Contrib Miner Petr 139:704–719

    Article  Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet Sci Lett 181:71–87

    Article  Google Scholar 

  • Kopylova MG, Gurney JJ, Daniels LRM (1997) Mineral inclusions in diamonds from the River Ranch kimberlite, Zimbabwe. Contrib Miner Petr 129:366–384

    Article  Google Scholar 

  • Kopylova M, Navon O, Dubrovinsky L, Khachatryan G (2010) Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet Sci Lett 291(1–4):126–137

    Article  Google Scholar 

  • Kopylova MG, Afanasiev VP, Bruce LF, Thurston P, Ryder J (2011) Metaconglomerate preserves evidence for kimberlite, diamondiferous root and medium grade terrane of a pre-2.7 Ga Southern Superior protocraton. Earth Planet Sci Lett 312:213–225

    Article  Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Lloyd FE, Woolley AR, Stoppa F, Eby GN (2002) Phlogopite-biotite parageneses from the K-mafic-carbonatite effusive magmatic association of Katwe-Kikorongo, SW Uganda. Mineral Petrol 74:299–322

    Article  Google Scholar 

  • Luth RW (1999) Carbon and carbonates in the mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology; field observations and high-pressure experimentation; a tribute to Francis R. (Joe) Boyd, vol. Geochemical Society. University of Houston, Department of Chemistry, Houston, pp 297–316

    Google Scholar 

  • McCammon CA, Griffin WL, Shee SR, O’Neill HSC (2001) Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib Miner Petr 141:287–296

    Article  Google Scholar 

  • McCammon C, Kopylova MG (2004) A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Mineral Petr 148:55–68

    Google Scholar 

  • McNeill J, Pearson DG, Klein-Ben David O, Nowell GM, Ottley CJ, Chinn I (2009) Quantitative analysis of trace element concentrations in some gem-quality diamonds. J Phys Condens Matter 21(36):13–20

    Article  Google Scholar 

  • Melton GL, McNeill J, Stachel T, Pearson DG, Harris JW (2012) Trace elements in gem diamond from Akwatia, Ghana and DeBeers Pool, South Africa. Chem Geol 1–8:314–317

    Google Scholar 

  • Menzies M, Hawkesworth C (1987) Mantle metasomatism. Academic, London

    Google Scholar 

  • Menzies MA, Rogers N, Tindle AG, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic, London, pp 313–361

    Google Scholar 

  • Miller CM, Kopylova MG, Ryder J (2012) Vanished diamondiferous cratonic root beneath the Southern Superior province: evidence from diamond inclusions in the Wawa metaconglomerate. Contrib Miner Petrol 164(4):697–714

    Article  Google Scholar 

  • Navon O (1999) Diamond formation in the Earth’s mantle, in Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth International Kimberlite Conference, Red Roof Design, Cape Town, 584–604

  • O’Neill CJ, Wood BJ (1979) An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Miner Petr 70:59–70

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2010) The continental lithosphere–asthenosphere boundary: can we sample it? Lithos 120(1–2):1–13

    Article  Google Scholar 

  • Otsuka K, Longo M, McCammon CA, Karato SI (2013) Ferric iron content of ferropericlase as a function of composition, oxygen fugacity, temperature and pressure: implications for redox conditions during diamond formation in the lower mantle. Earth Planet Sc Lett 365:7–16

    Article  Google Scholar 

  • Pal’yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV (2002) Diamond formation through carbonate-silicate interaction. Am Mineral 87(7):1009–1013

    Google Scholar 

  • Pearson D, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed.) The mantle and core, vol 2. Elsevier, pp 172–260

  • Rampone E, Piccardo GB, Vannucci R, Bottazzi P, Zanetti A (1994) Melt impregnation in ophiolithic peridotite: an ion microprobe study of clinopyroxene and plagioclase. Mineral Mag 58A:756–757

    Article  Google Scholar 

  • Reed SJB (1996) Electron microprobe analysis and scanning electron microscopy in geology. Cambridge University Press, Great Britain

    Google Scholar 

  • Rege S, Griffin WL, Pearson NJ, Araujo D, Zedgenizov D, O’Reilly SY (2010) Trace-element patterns of fibrous and monocrystalline diamonds: insights into mantle fluids. Lithos 118:313–337

    Article  Google Scholar 

  • Rehfeldt T, Foley SF, Jacob DE, Carlson RW, Lowry D (2008) Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberly, South Africa. Geoch Cosmoch Acta 72:5722–5756

    Article  Google Scholar 

  • Rickard RS, Harris JW, Gurney JJ, Cardoso P (1989) Mineral inclusions in diamonds from Koffiefontein mine. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly S., Danchin RV, Janse AJA (eds.) Kimberlites and related rocks, volume 2. Proceedings of the 4th International Kimberlite Conference. Perth, Blackwell Scientific Publications, 1054–1062

  • Rohrbach A, Schmidt MW (2011) Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472(7342):209–212

    Article  Google Scholar 

  • Schulze D (1995) Low-Ca garnet harzburgites from Kimberley, South Africa: abundance and bearing on the structure and evolution of the lithosphere. J Geophy Res 100:12513–12526

    Article  Google Scholar 

  • Simon NSC, Irvine GJ, Davies GR, Pearson D, Carlson RW (2003) The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71:289–322

    Article  Google Scholar 

  • Simon NSC, Carlson RW, Pearson D, Davies G (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48:549–565

    Google Scholar 

  • Smith D, Boyd FR (1992) Compositional zonation in garnets in peridotite xenoliths. Contrib Miner Petr 112(1):134–147

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Dubrovinsky L, Navon O, Ryder J, Tomlinson EL (2011) Transmission X-ray diffraction as a new tool for diamond fluid inclusion studies. Min Mag 75(5):2657–2675

    Article  Google Scholar 

  • Smith EM, Kopylova MG, Nowell GM, Pearson DG, Ryder J (2012) Archean mantle fluids preserved in fibrous diamonds from Wawa, Superior craton. Geology 40(12):1071–1074

    Article  Google Scholar 

  • Sokol AG, Pal’yanov YN (2008) Diamond formation in the system MgO-SiO2-H2O-C at 7.5 GPa and 1600 degrees C. Contrib Miner Petrol 155(1):33–43

    Article  Google Scholar 

  • Solovova IP, Girnis AV, Ryabchikov ID, Kononkova NN (2008) Origin of carbonatite magma during the evolution of ultrapotassic basite magma. Petrology 16(4):376–394

    Article  Google Scholar 

  • Spetsius Z (1999) Two generations of diamonds in eclogite xenoliths from Yakutia. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the VIIth International Kimberlite Conference, Red Roof Design, Cape Town, 823–828

  • Stachel T, Harris JW (1997) Diamond precipitation and mantle metasomatism—evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Mineral Petr 129(2–3):143–154

    Article  Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds: constraints from mineral inclusions. Ore Geol Rev 34:5–32

    Article  Google Scholar 

  • Stachel T, Harris JW (2009) Formation of diamond in the Earth’s mantle. J Phys Condens Matter 21:10–18

    Article  Google Scholar 

  • Stachel T, Viljoen KS, Brey G, Harris JW (1998) Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet Sci Lett 159:1–12

    Article  Google Scholar 

  • Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19

    Article  Google Scholar 

  • Sunagawa I (1990) Growth and morphology of diamond crystals under stable and metastable conditions. J Cryst Growth 99(1–4):1156–1161

    Article  Google Scholar 

  • Sweeney RJ, Thompson AB, Ulmer P (1993) Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib Miner Petr 115:225–241

    Article  Google Scholar 

  • Tang Y-J, Zhang H-F, Ying J-F, Su B-X (2013) Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci Rev. doi:10.1016/j.earscirev.2013.1001.1004

    Google Scholar 

  • Tappert R, Stachel T, Harris JW, Shimizu N, Brey GP (2005) Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur J Miner 17:423–440

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa. Part I: mineralogy, petrography and whole rock chemistry. J Geol 97:551–567

    Article  Google Scholar 

  • Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257(3–4):362–371

    Article  Google Scholar 

  • Tomlinson E, De Schrijver I, De Corte K, Jones AP, Moens L, Vanhaecke F (2005) Trace element compositions of submicroscopic inclusions in coated diamond: a tool for understanding diamond petrogenesis. Geoch Cosmoch Acta 69:4719–4732

    Article  Google Scholar 

  • Tomlinson EL, Jones AP, Harris JW (2006) Co-existing fluid and silicate inclusions in mantle diamond. Earth Planet Sci Lett 250:581–595

    Article  Google Scholar 

  • Tomlinson EL, Muller W, EIMF (2009) A snapshot of mantle metasomatism: trace element analysis of coexisting fluid (LA-ICPMS) and silicate (SIMS) inclusions in fibrous diamonds. Earth Planet Sci Lett 279:362–372

    Article  Google Scholar 

  • Van Rythoven AD, Schulze DJ (2009) In-situ analysis of diamonds and their inclusions from the Diavik mine, Northwest Territories, Canada: mapping diamond growth. Lithos 112:870–879

    Article  Google Scholar 

  • Weiss Y, Griffin WL, Elhlou S, Navon O (2008) Comparison between LA-ICP-MS and EPMA analysis of trace elements in diamonds. Chem Geol 252:158–168

    Article  Google Scholar 

  • Weiss Y, Kessel R, Griffin WL, Kiflawi I, Klein-BenDavid O, Bell DR, Harris JW, Navon O (2009) A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea. Lithos 112(Supplement 2):660–674

    Article  Google Scholar 

  • Weiss Y, Griffin WL, Bell DR, Navon O (2011) High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet Sci Lett 309:337–347

    Article  Google Scholar 

  • Wiens RC, Burnnett DS, Armstrong JT, Johnson ML (1994) A simple method to recognize and correct for surface roughness in scanning electron microscope energy-dispersive spectroscopy. Microbeam Anal 3:117–124

    Google Scholar 

  • Zedgenizov DA, Harte B, Shatsky VS, Politov AA, Rylov GM, Sobolev NV (2006) Directional chemical variations in diamonds showing octahedral following cuboid growth. Contrib Mineral Petr 151(1):45–57

    Article  Google Scholar 

  • Zedgenizov DA, Ragozin AL, Shatsky VS, Araujo D, Griffin WL, Kagi H (2009) Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 112(S2):638–647

    Article  Google Scholar 

Download references

Acknowledgments

The research was funded by an NSERC grant to MGK and SEG student research grant and NSERC-Canadian Graduate Scholarship to ES. The authors are grateful for support and samples received from J. Ryder (Dianor Resources) and Diavik Diamond Mines Inc. (with the help of H. McLean, Y. Kinakin, and G. Villegas). The authors would also like to acknowledge M. Raudsepp and E. Czech for their aid in data collection on the electron microprobe, and E. Tomlinson and an anonymous reviewer for improving the earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Kopylova.

Additional information

Editorial handling: A. R. Chakhmouradian

Highlights

Fibrous diamond formation is associated with refertilization of the cratonic mantleDiamond forms when carbonatitic fluids are reduced, depositing Ca and incompatible elements in the mantle

Diamond forms when carbonatitic fluids are reduced, depositing Ca and incompatible elements in the mantle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, C.E., Kopylova, M. & Smith, E. Mineral inclusions in fibrous diamonds: constraints on cratonic mantle refertilization and diamond formation. Miner Petrol 108, 317–331 (2014). https://doi.org/10.1007/s00710-013-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-013-0305-3

Keywords

Navigation