Skip to main content
Log in

Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Monazite in melt-producing, poly-metamorphic terranes can grow, dissolve or reprecipitate at different stages during orogenic evolution particularly in hot, slowly cooling orogens such as the Svecofennian. Owing to the high heat flow in such orogens, small variations in pressure, temperature or deformation intensity may promote a mineral reaction. Monazite in diatexites and leucogranites from two Svecofennian domains yields older, coeval and younger U–Pb SIMS and EMP ages than zircon from the same rock. As zircon precipitated during the melt-bearing stage, its U–Pb ages reflect the timing of peak metamorphism, which is associated with partial melting and leucogranite formation. In one of the domains, the Granite and Diatexite Belt, zircon ages range between 1.87 and 1.86 Ga, whereas monazite yields two distinct double peaks at 1.87–1.86 and 1.82–1.80 Ga. The younger double peak is related to monazite growth or reprecipitation during subsolidus conditions associated with deformation along late-orogenic shear zones. Magmatic monazite in leucogranite records systematic variations in composition and age during growth that can be directly linked to Th/U ratios and preferential growth sites of zircon, reflecting the transition from melt to melt crystallisation of the magma. In the adjacent Ljusdal Domain, peak metamorphism in amphibolite facies occurred at 1.83–1.82 Ga as given by both zircon and monazite chronology. Pre-partial melting, 1.85 Ga contact metamorphic monazite is preserved, in spite of the high-grade overprint. By combining structural analysis, petrography and monazite and zircon geochronology, a metamorphic terrane boundary has been identified. It is concluded that the boundary formed by crustal shortening accommodated by major thrusting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen RL, Lundström I, Ripa M, Simeonov A, Christofferson H (1996a) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Econ Geol 91:979–1008

    Article  Google Scholar 

  • Allen RL, Weihed P, Svensson S-Å (1996b) Setting of Zn-Cu-Au-Ag massive sulphide deposits in the evolution and facies architecture of the 1.9 Ga marine volcanic arc, Skellefte district, Sweden. Econ Geol 91:1022–1053

    Article  Google Scholar 

  • Andersson UB, Högdahl K, Sjöström H, Bergman S (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geol Mag 143:679–697

    Article  Google Scholar 

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust; an example from the Kinzigite formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153

    Article  Google Scholar 

  • Bergman S, Sjöström H (1994) The Storsjön-Edsbyn deformation zone, central Sweden. Research report, Geol Surv Sweden, p 46

  • Bergman S, Högdahl K, Nironen M, Ogenhall E, Sjöström H, Lundqvist L, Lahtinen R (2008) Timing of Palaeoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield; evidence from detrital zircon in metasandstones. Precambrian Res 161:231–249. doi:10.1016/j.precamres.2007.08.007

    Article  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse MJ, Davis WJ (2004) Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contrib Mineral Petrol 147:671–683. doi:10.1007/s00410-004-0585-z

    Article  Google Scholar 

  • Braun I, Montel JM, Nicollet C (1998) Electrone microprobe dating of monazite from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol 146:65–85

    Article  Google Scholar 

  • Carson CJ, Ague JJ, Grove M, Cath CD, Harrsion TM (2002) U-Pb isotopic behavior of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, Antarctica. Earth Planet Sci Lett 199:287–310

    Article  Google Scholar 

  • Chardon D, Gapais D, Cagnard F (2009) Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477:105–118. doi:10.1016/j.tecto.2009.03.008

    Article  Google Scholar 

  • Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840. doi:10.1016/j.gca.200.07.012

    Google Scholar 

  • Claesson S, Lundqvist Th (1995) Origins and ages of Proterozoic granitoids in the Bothnian Basin, central Sweden; isotopic and geochemical constraints. Lithos 36:115–140

    Article  Google Scholar 

  • Claesson S, Huhma H, Kinny PD, Williams IS (1993) Svecofennian detrital zircon ages—implications for the Precambrian evolution of the Baltic Shield. Precambrian Res 64:109–130

    Article  Google Scholar 

  • Cocherie A, Legendre O, Peucal JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:65–85

    Article  Google Scholar 

  • Dahl PS, Terry MP, Jercinovic MJ, Williams ML, Hamilton MA, Foland KA, Clement SM, Friberg LM (2005a) Electron probe (Ultrachron) microchronometry of metamorphic monazite: unraveling the timing of polyphase deformation in the eastern Wyoming craton (Black Hills, South Dakota). Am Mineral 90:1712–1728

    Article  Google Scholar 

  • Dahl PS, Hamilton MA, Jercinovic MJ, Terry MP, Williams ML, Frei R (2005b) Comparative isotopic and chemical geochronometry of monazite, with implications for U-Th-Pb dating by electron microprobe: an example from metamorphic rocks of the eastern Wyoming craton (U.S.A.). Am Mineral 90:619–638

    Article  Google Scholar 

  • Delin H (1993) The radiometric age of the Ljusdal granodiorite of Central Sweden. In: Lundqvist Th (ed) Radiometric dating results. Geol Surv Sweden C, vol 823, pp 13–16

  • DeWolf CP, Belshaw NS, O’Nions RK (1993) A metamorphic history from micro-scale 207Pb/206Pb chronometry of Archean monazite. Earth Planet Sci Lett 120:207–220

    Article  Google Scholar 

  • Ferry JM (2000) Patterns of mineral occurrence in metamorphic rocks. Am Mineral 85:1573–1588

    Google Scholar 

  • Fitzsimons ICW, Kinny PD, Wetherley S, Hollingsworth DA (2005) Bulk chemical control on metamorphic monazite growth in pelitic schist and implications for U-Pb age data. J Metamorph Geol 23:261–277

    Article  Google Scholar 

  • Förster HJ (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, part I: the monazite-(Ce)-brabantite solid solution series. Am Mineral 83:259–272

    Google Scholar 

  • Foster G, Gibson HD, Parrish R, Horstwood M, Fraser J, Tindle A (2002) Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol 191:183–207

    Article  Google Scholar 

  • Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambrian Res 35:15–52

    Article  Google Scholar 

  • Gorbatschev R, Kornfält KA, Lundegårdh PH (1997) Beskrivning till berggrundskartan över Jämtlands län. del 1: Urberget (in Swedish). Geol Surv Sweden Ca, vol 53, p 1250

  • Hancher JM, Miller CF (1993) Zircon zonation pattern as revealed by cathodoluminescence and backscattered electron images: implication for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  Google Scholar 

  • Harley SL, Kelly NM, Möller A (2007) Zircon behaviour and the thermal histories of mountain chains. Elements 3:25–30

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2011) Fluid-mediated partial alteration in monazite: the role of coupled dissolution-reprecipitation in element redistribution and mass transfer. Contrib Mineral Petrol 162:329–348. doi:10.1007/s00410-010-0599-7

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallisation in plutonic rocks. Geology 35:635–638

    Article  Google Scholar 

  • Hellström F, Andersson J, Persson Nilsson K, Bergman T, Rimša A (2010) U–Pb zircon SIMS geochronology of a leucogranite at Björkön in the Sundsvall area, central Sweden. Geol Surv Sweden report 2010, vol 16, p 12

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852. doi:10.1046/j.1525-1314.2003.00484.x

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Andersson J, Page L (2007) Penetrative ductile deformation and amphibolite facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Res 135:29–45

    Article  Google Scholar 

  • Hietanen A (1975) Generation of potassium-poor magmas in the northern Sierra Nevada and the Svecofennian of Finland. J Res US Geol Surv 3:631–645

    Google Scholar 

  • Högdahl K (2000a) Late-orogenic, ductile shear zones and protolith ages in the Svecofennian domain, central Sweden. Meddelanden från Stockholms universitet 309, PhD thesis Stockhom University, 21 p

  • Högdahl K (2000b) 1.86–1.85 Ga intrusive ages of K-feldspar megacryst-bearing granites in the type area of the Revsund granite in Jämtland County, central Sweden. GFF Trans Geol Soc Stock 122:359–366

    Google Scholar 

  • Högdahl K, Sjöström H (2001) Evidence for a 1.82 Ga transpressive shearing in a 1.85 Ga granitoid in central Sweden: implications for the regional evolution. Precambrian Res 105:37–56

    Article  Google Scholar 

  • Högdahl K, Sjöström H (2009) Relationship between partial melting, metamorphism and deformation in the area between the Ljusdal Batholith and the Bothnian Basin, central Sweden. Research report, Geol Surv Sweden, p 44

  • Högdahl K, Sjöström H (2010) Deep drilling in a Palaeoproterozoic hot orogen—potential for deciphering the orogenic accretion and physical properties of a tectonically layered crust. GFF Trans Geol Soc Stock 132:55–63

    Google Scholar 

  • Högdahl K, Lundqvist Th (2009) Discussion on “Successive ~1.94 Ga plutonism and ~1.92 Ga deformation and metamorphism south of the Skellefte district, northern Sweden: substantiation of the marginal basin accretion hypothesis of Svecofennian evolution” by Skiöld T, Rutland RWR, Precambrian Res 148:181–204, 2006. Precambrian Res 168:330–334. doi:10.1016/j.precamres.2008.04.003

  • Högdahl K, Sjöström H, Gromet LP (2001) Character and timing of Svecokarelian, late-orogenic, ductile deformation zones in Jämtland, west central Sweden. GFF Trans Geol Soc Stock 123:225–236

    Google Scholar 

  • Högdahl K, Andersson UB, Eklund O (2004) The Transscandinavian Igneous Belt: a review. Geol Surv Finland Sp Papers, vol 37, p 125

  • Högdahl K, Sjöström H, Andersson UB, Ahl M (2008) Continental margin magmatism and migmatisation in the west-central Fennoscandian Shield. Lithos 102:435–459. doi:10.1016/j.lithos.2007.07.019

    Article  Google Scholar 

  • Högdahl K, Sjöström H, Bergman S (2009) Ductile shear zones related to crustal shortening and domain boundary evolution in the central Fennoscandian Shield. Tectonics 28:TC1003. doi: 10.1029/2008TC002277

  • Kelly NM, Clarke GL, Harley SL (2006) Monazite behaviour and age significance in poly-metamorphic high-grade terrains: a case study from the western Musgrave Block, central Australia. Lithos 88:100–134. doi:10.1016/j.lithos.2005.08.007

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metamorph Geol 26:199–212. doi:10:1111/j.1525-1314.2007.00757.x

    Article  Google Scholar 

  • Kirkland CL, Whitehouse MJ, Slagstad T (2009) Fluid-assisted zircon and monazite growth within a shear zone; a case study from Finmark, Arctic Norway. Contrib Mineral Petrol 158:637–657. doi:10.1007/s00410-009-0401-x

    Article  Google Scholar 

  • Kohn MJ, Malloy MA (2004) Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determination. Geochim Cosmochim Acta 68:101–113

    Article  Google Scholar 

  • Kohn MJ, Wieland MS, Parkinson CD, Upreti BN (2005) Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. J Metamorph Geol 23:399–406

    Article  Google Scholar 

  • Koistinen T, Stephens MB, Bogatchev V, Nordgulen Ø, Wennerström M, Korhonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2,000,000. Geological Survey of Finland, Geological Survey of Sweden, Ministry of Natural Resources of Russia, Geological Survey of Norway

  • Korja A, Heikkinen P (2005) The accretionary Svecofennian orogen—insight from the BABEL profiles. Precambrian Res 136:241–268

    Article  Google Scholar 

  • Korsman K, Hölttä P, Hautala T, Waesenius P (1984) Metamorphism as an indicator of evolution and structure of crust in Eastern Finland. Geol Surv Finland Bull, vol 328, p 40

  • Krenn E, Janák M, Finger F, Broska I, Konečný P (2009) Two types of metamorphic monazite with contrasting La/Nd, Th, and Y signatures in an ultrahigh-pressure metapelite from the Pohorje Mountains, Slovenia: indications for pressure-dependent REE exchange between apatite and monazite? Am Min 94:801–815

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:227–279

    Google Scholar 

  • Lahtinen R, Korja A, Nironen M (2005) Paleoptoterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. Developments in Precambrian Geology 14, Elsevier, Amsterdam, pp 483–532

  • Lahtinen R, Korja A, Nironen M, Heikkinen P (2009) Palaeoproterozoic accretionary processes in Fennoscandia. Geol Soc Lond Sp Publ 318:237–256. doi:10.1144/SP318.8

    Article  Google Scholar 

  • Ludwig KR (2003) Isoplot 3.00; a geochronological toolkit for Microsoft Excel. Berkely Geochronological Center Publication No. 4

  • Lundqvist Th, Vaasjoki M, Persson P-O (1998) U-Pb ages of plutonic and volcanic rocks in the Svecofennian Bothnian Basin, central Sweden, and their implications for the Palaeoproterozoic evolution of the basin. GFF Trans Geol Soc Stock 120:357–363

    Google Scholar 

  • Lundström I, Allen RL, Persson P-O, Ripa M (1998) Stratigraphies and depositional ages of Svecofennian, Palaeoproterozoic metavolcanic rocks in E. Svealand and Bergslagen, south central Sweden. GFF Trans Geol Soc Stock 120:315–320

    Google Scholar 

  • Magnusson NH (1946) Den svenska urbergsforskningen under de senaste tjugofem åren (in Swedish). GFF Trans Geol Soc Stock 68:171–200

    Google Scholar 

  • Mahan KH, Goncalves P, Williams ML, Jercinovic MJ (2006) Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. J Metamorph Geol 24:193–217

    Article  Google Scholar 

  • McFarlane CRM, Connelly JN, Carlson WD (2006) Contrasting response of monazite and zircon to high-T thermal overprint. Lithos 88:135–149. doi:10.1016/j.lithos.2005.08008

    Google Scholar 

  • Möller A, O’Brian P, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh-temperature granulites of Rogaland (SW Norway). Geol Soc Lond Sp Publ 220:65–81. doi:10.1144/GSL.SP.2003.220.01.04

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet Ch, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Mouri H, Korsman K, Huhma H (1999) Tectonometamorphic evolution and timing of the melting process in the Svecofennian tonalite-trondhjemite migmatite belt: an example from Luopioinen, Tampere area, southern Finland. Bull Geol Soc Finl 71:31–56

    Google Scholar 

  • Nironen M (1989) Emplacement and structural setting of granitoids in the early Proterozoic Tampere and Savo Schist Belts, Finland—implications for contrasting crustal evolution. Geol Surv Finland Bull, vol 346, p 83

  • Nironen M (1997) The Svecofennian Orogen: a tectonic model. Precambrian Res 86:21–44

    Article  Google Scholar 

  • Ogenhall E (2007) Plate tectonic setting of the Svecofennian Palaeoproterozoic volcanic rocks at Hamrånge and Loos, south central Sweden, based on geochemical data. GFF Trans Geol Soc Stock 129:211–226

    Google Scholar 

  • Petrik I, Konečný P (2009) Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nizke Tatry Mounatins, Western Carpatians, Slovakia: chemical dating and evidence for disequilibrium melting. Am Mineral 94:957–974

    Article  Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory-phase growth in low-pressuer migmatites from SW New Hampshire. Am Mineral 88:338–351

    Google Scholar 

  • Pyle JM, Spear FS, Cheney JT, Layne G (2005) Monazite ages in the Chesam Pond Nappe, SW New Hampshire, U.S.A.: implications for assembly of central New England thrust sheets. Am Mineral 90:592–606

    Article  Google Scholar 

  • Romer RL, Öhlander B (1995) Tectonic implications of an 1846 ± 1 Ma old migmatitic granite in south-central Sweden. GFF Trans Geol Soc Stock 117:69–74

    Google Scholar 

  • Romer RL, Smeds S-A (1994) Implications for U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90–1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Res 67:141–158

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Rubatto D, Gebauer D, Compagnoni R (1999) Dating of eclogite-facies zircons: the age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth Planet Sci Lett 167:141–158

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buik IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Article  Google Scholar 

  • Rutland RWR, Williams IS, Korsman K (2004) Pre-1.91 Ga deformation and metamorphism in the Palaeoproterozoic Vammala Migmatite Belt, southern Finland, and implications for Svecofennian tectonics. Bull Geol Soc Finl 76:93–140

    Google Scholar 

  • Sawyer EW (2001) Melt segregation in the continental crust: distribusion and movement of melt in anatectic rocks. J Metamorph Geol 19:291–309

    Article  Google Scholar 

  • Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystalliation of zircon and preservation of monazite in high-grade metamorphism: convential and in situ U-Pb isotope, chatodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    Article  Google Scholar 

  • Schreurs J, Westra L (1986) The thermotectonic evolution of a Proterozoic low pressure, granulite dome, West Uusimaa, SW Finland. Contrib Mineral Petrol 93:236–250

    Article  Google Scholar 

  • Sjöström H, Bergman, S (1998) Svecofennian metamorphic and tectonic evolution of east central Sweden. Research report, Geol Surv Sweden, p 50

  • Teufel S, Heinrich W (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281

    Article  Google Scholar 

  • Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2000) Low temperature monazite in the Ireteba Granite, southern Nevada; geochronological implications. Chem Geol 172:95–112

    Article  Google Scholar 

  • Väisänen M, Hölttä P (1999) Structural and metamorphic evolution of the Turku migmatite complex, southwestern Finland. Bull Geol Soc Finl 71:177–218

    Google Scholar 

  • Väisänen M, Mänttäri I, Hölttä P (2002) Svecofennian magmatic and metamorphic evolution in southwestern Finland as revealed by U-Pb zircon SIMS geochronology. Precambrian Res 116:111–127

    Article  Google Scholar 

  • Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons; geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404

    Article  Google Scholar 

  • Weihed P, Billström K, Persson P-O, Bergman-Weihed J (2002) Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield. GFF Trans Geol Soc Stock 124:163–180

    Google Scholar 

  • Welin E (1987) The depositional evolution of the Svecofennian supracrustal sequence in Finland and Sweden. Precambrian Res 35:95–113

    Article  Google Scholar 

  • Welin E, Christiansson K, Kähr AM (1993) Isotopic investigations of metasedimentary and igneous rocks in the Paleoproterozoic Bothnian Basin, central Sweden. GFF Trans Geol Soc Stock 115:285–296

    Google Scholar 

  • Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. J Petrol 46:291–318

    Article  Google Scholar 

  • Whitehouse MJ, Kemp AIS (2010) On the difficulty of assigning crustal residence, magmatic protolith and metamorphic ages to Lewisian granulites: constraints from combined in situ U-Pb and Lu-Hf isotopes. Geol Soc Lond SP 335:81–101. doi:10.1144/SP335.5

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS, Moorbath S (1999) Age significance of U-Th-Pb zircon data from early Archaean rocks of west Greenland—a reassessment based on combined ion-microprobe and imaging studies. Chem Geol 160:201–224

    Article  Google Scholar 

  • Williams IS, Claesson C (1987) Isotopic evidence for the Pre-cambrian provenance and Caledonian metamorphism of the high-grade paragneisses from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Pb-Th. Contrib Mineral Petrol 97:205–217

    Article  Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35:137–175

    Article  Google Scholar 

  • Zeh A, Williams IS, Brätz H, Millar IL (2003) Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contrib Mineral Petrol 145:691–706

    Article  Google Scholar 

  • Zhu XK, O’Nions RK (1999) Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology; a case study from the Lewisian terrain. Earth Planet Sci Lett 171:209–220

    Article  Google Scholar 

  • Zhu XK, O’Nions RK, Belshaw NS, Gibb AJ (1997) Significance of in situ SIMS chronometry of zoned monazite from the Lewisian granulites, northwest Scotland. Chem Geol 135:35–53

    Article  Google Scholar 

Download references

Acknowledgments

Martin Whitehouse, Lev Ilinsky and Kerstin Lindén at the Nordsim laboratory in Stockholm are acknowledged for sample preparation and support with the SIMS analyses. The ion probe facility in Stockholm is operated under an agreement between the joint Nordic research councils (NOS-N), the Geological Survey of Finland and Swedish Museum of Natural History. Jenny Andersson, Geological Survey of Sweden, separated the monazite from samples TOB050126 and PDN050104 and Fredrik Hellström, Geological Survey of Sweden, picked and mounted these monazites and monazites from samples 87034. Hans Harrysson, Uppsala University, handled the EMP in Uppsala and compiled the element maps. Lara Blyte and Frances Deegan, also at Uppsala University, kindly checked the language. Constructive comments from two anonymous reviewers improved the final version of the text considerably. This study was supported by the Geological Survey of Sweden and the paper is Nordsim publication no. 293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Högdahl.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Högdahl, K., Majka, J., Sjöström, H. et al. Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden. Contrib Mineral Petrol 163, 167–188 (2012). https://doi.org/10.1007/s00410-011-0664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0664-x

Keywords

Navigation