Skip to main content
Log in

An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Integrated textural and chemical characterisation of zircon is used to refine the U–Pb geochronology of the Archaean, ultra-high temperature Napier Complex, east Antarctica. Scanning electron microscope characterisation of zircon and the rare earth element compositions of zircon, garnet and orthopyroxene are integrated to place zircon growth in an assemblage context, thereby providing tighter constraints on the timing of magmatic and metamorphic events. Data indicate that magmatism occurred in the central and northern Napier Complex at ca. 2,990 Ma. A regional, relatively low-pressure metamorphic event occurred at ca. 2,850–2,840 Ma. Mineral REE data from garnet-bearing orthogneiss indicate that ca. 2,490–2,485 Ma U–Pb zircon ages provide an absolute minimum age for the ultrahigh temperature (UHT) foliation preserved in this rock. Internal zircon zoning relationships and estimated zircon-garnet DREE values from paragneiss suggest that an absolute minimum age of ultra-high temperature metamorphism is ca. 2,510 Ma, but that it is more likely to be older than ca. 2,545 Ma. We suggest that the high proportion of published zircon U–Pb data with ages between ca. 2,490–2,450 Ma reflects late, post-peak zircon growth and does not date the timing of peak UHT metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anders E, Grevasse N (1989) Abundances of the elements—meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  CAS  Google Scholar 

  • Asami M, Suzuki K, Grew ES, Adachi M (1998) CHIME ages for granulites from the Napier Complex, East Antarctica. Polar Geosci 11:172–199

    Google Scholar 

  • Asami M., Suzuki K, Grew ES (2002) Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archaean Napier Complex, East Antarctica: evidence for ultra-high-temperature metamorphism at 2,400 Ma. Precambr Res 114:249–275

    Article  CAS  Google Scholar 

  • Ashwal LD, Tucker RD, Zinner EK (1999) Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochim Cosmochim Acta 63:2839–2851

    Article  CAS  Google Scholar 

  • Barbey P, Alle P, Brouand M, Albarede F (1995) Rare-earth patterns in zircons from the Manaslu granite and Tibetan Slab migmatites (Himalaya): insights in the origin and evolution of a crustally-derived granite magma. Chem Geol 125:1–17

    Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. J Petrol 37:521–552

    CAS  Google Scholar 

  • Bea F, Montero P (1999) Behaviour of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153

    Google Scholar 

  • Bea F, Montero P, Garuti G, Zacharini F (1997) Pressure-dependence of rare earth element distribution in amphibolite- and granulite-grade garnets. A LA-ICP-MS study. Geostandards Newslett 21:253–270

    CAS  Google Scholar 

  • Black LP (1988) Isotopic resetting of U–Pb zircon and Rb-Sr and Sm-Nd whole-rock systems in Enderby Land, Antarctica: implications for the interpretation of isotopic data from polymetamorphic and multiply deformed terrains. Precambr Res 38:355–365

    Article  CAS  Google Scholar 

  • Black LP, James PR (1979) Preliminary isotopic ages from Enderby Land, Antarctica. J Geol Soc Aus 26:266-267

    Google Scholar 

  • Black LP, James PR, Harley SL (1983a) Geochronology and geological evolution of metamorphic rocks in the Field Islands area, East Antarctica. J Metamorphic Geol 1:277–303

    CAS  Google Scholar 

  • Black LP, James PR, Harley SL (1983b) The geochronology, structure and metamorphism of early Archaean rocks at Fyfe Hills, Enderby Land, Antarctica. Precambr Res 21:197–222

    Article  CAS  Google Scholar 

  • Black LP, Sheraton JW, James PR (1986a) Late Archaean granites of the Napier Complex, Enderby Land, Antarctica: a comparison of Rb-Sr, Sm-Nd and U–Pb isotopic systematics in a complex terrain. Precambr Res 32:343–368

    Article  CAS  Google Scholar 

  • Black LP, Williams IS, Compston W (1986b) Four zircon ages from one rock: the history of a 3,930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contrib Mineral Petrol 94:427–437

    Article  CAS  Google Scholar 

  • Boger SD, Carson CJ, Fanning CM, Hergt JM, Wilson CJL, Woodhead JD (2002) Pan-African intraplate deformation in the northern Prince Charles Mountains, east Antarctica. Earth Planet Sci Lett 195:195–210

    Article  CAS  Google Scholar 

  • Carson CJ, Ague JJ, Grove M, Coath CD, Harrison TM (2002a) U–Pb isotopic behaviour of zircon during upper-amphibolite facies fluid infiltration in the Napier Complex, east Antarctica. Earth Planet Sci Lett 199:287–310

    Article  CAS  Google Scholar 

  • Carson CJ, Ague JJ, Coath CD (2002b) U–Pb geochronology from Tonagh Island, east Antarctica: implications for the timing of ultra-high temperature metamorphism of the Napier Complex. Precambr Res 116:237–263

    Article  CAS  Google Scholar 

  • Claoue-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. Geochronology Time Scales and Global Stratigraphic Correlation, SEPM Special Publication No. 54, pp 3–21

    Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from Lunear Breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89:525–534

    CAS  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Reviews in mineralogy and geochemistry, vol 53. Zircon, Mineralogical Society of America, Washington, pp 469–495

  • Crowe WA, Osanai Y, Toyoshima T, Owada M, Tsunogae T, Hokada T. (2002). SHRIMP geochronology of a mylonite zone on Tonagh Island: characterisation of the last high-grade tectonothermal event in the Napier Complex, East Antarctica. Polar Geosci 15:17–36

    Google Scholar 

  • Dallwitz WB (1968) Coexisting sapphirine and quartz in granulites from Enderby Land, Antarctica. Nature 219:476–477

    CAS  Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65:749–758

    Article  CAS  Google Scholar 

  • DePaolo DJ, Manton WI, Grew ES, Halpern M (1982) Sm–Nd, Rb–Sr and U–Th–Pb systematics of granulite facies rocks from Fyfe Hills, Enderby Land, Antartica. Nature 298:614–618

    CAS  Google Scholar 

  • Ellis DJ, Green DH (1985) Garnet-forming reaction in mafic granulites from Enderby Land, Antarctica—Implications for geothermometry and geobarometry. J Petrol 26:633–662

    Google Scholar 

  • Ellis DJ, Sheraton JW, England RN, Dallwitz WB (1980) Osumulite–sapphirine–quartz granulites from Enderby Land, Antarctica—mineral assemblages and reactions. Contrib Mineral Petrol 72:123–143

    Article  CAS  Google Scholar 

  • Fraser G, Ellis D, Eggins S (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610

    Article  CAS  Google Scholar 

  • Grew ES (1980) Sapphirine + quartz association from Archaean rocks in Enderby Land, Antarctica. Amer Mineral 65:821–836

    CAS  Google Scholar 

  • Grew ES (1982) Osumilite in the sapphirine–quartz terrane of Enderby Land, Antarctica: implications for osumilite petrogenesis in the granulite-facies. Amer Mineral 67:762–787

    CAS  Google Scholar 

  • Grew ES (1998) Boron and Beryllium minerals in granulite-facies pegmatites and implications of Beryllium pegmatites for the origin and evolution of the Archaean Napier Complex of East Antarctica. In: Motoyoshi Y, Shiraishi K (eds) Origin and evolution of continents. Proceedings of the international symposium “Origin and Evolution of Continents”. National Institute of Polar Research, Tokyo, pp 74–92

    Google Scholar 

  • Grew ES, Manton WI (1979) Archaean rocks in Antarctica: 2.5-billion-year uranium–lead ages of pegmatites in Enderby Land. Science 206:443–445

    Google Scholar 

  • Grew ES, Manton WI, Sandiford M (1982) Geochronological studies in East Antarctica: age of pegmatites in Casey Bay, Enderby Land. Antarct J US 17:1–2

    Google Scholar 

  • Grew ES, Suzuki K, Asami M (2001) CHIME ages of xenotime, monazite and zircon from beryllium pegmatites in the Napier Complex, Khmara Bay, Enderby Land, East Antarctica. Polar Geosci 14:99–118

    Google Scholar 

  • Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13

    Article  CAS  Google Scholar 

  • Hanchar JM, Rudnick RL (1995) Revealing hidden structures: the application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crustal xenoliths. Lithos 36:289–303

    Article  CAS  Google Scholar 

  • Harley SL (1985) Garnet-orthopyroxene bearing granulites from Enderby Land, Antarctica: metamorphic pressure–temperature–time evolution of the Archaean Napier Complex. J Petrol 26:819–856

    Google Scholar 

  • Harley SL (1998) An appraisal of peak temperatures and thermal histories in ultrahigh-temperature (UHT) crustal metamorphism: the significance of aluminous orthopyroxene. Mem Nat Inst Polar Rese, (Special Issue) 53:49–73

    Google Scholar 

  • Harley SL (2002) Zircon-garnet REE distribution patterns and the behaviour of zircon during UHT metamorphism. In: International mineralogical association meeting, Edinburgh, abstract, p 236, September

  • Harley SL, Black LP (1997) A revised Archaean chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies. Antarctic Sci 9:74–91

    Google Scholar 

  • Harley SL, Hensen BJ (1990) Archaean and Proterozoic high grade terranes of East Antarctica (40–80°E): a case study of diversity in granulite facies metamorphism. In: Ashworth JR Brown M (eds) High temperature metamorphism and crustal anatexis. Unwin Hyman, London, pp 320–370

    Google Scholar 

  • Harley SL, Motoyoshi Y (2000) Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1,120°C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contrib Mineral Petrol 138:293–307

    Article  CAS  Google Scholar 

  • Harley SL, Kinny PD, Snape I, Black LP (2001) Zircon chemistry and the definition of events in Archaean granulite terrains. In: Fourth International Archaean Symposium, Extended Abstract Volume, AGSO Geoscience Australia Record 2001/37, pp 511–513

  • Hawkins DP, Bowring SA (1999) U–Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Palaeoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petrol 134:150–169

    Article  CAS  Google Scholar 

  • Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607

    Article  CAS  Google Scholar 

  • Hensen BJ, Motoyoshi Y (1992) Osumilite-producing reactions in high-temperature granulites from the Napier Complex, East Antarctica: tectonic implications. In: Yoshida Y, Kaminuma K, Shiraishi K. (eds) Recent progress in Antarctic Earth Science. Terra Scientifica Publishing Company, Tokyo, pp 87–92

    Google Scholar 

  • Hermann J, Rubatto D, Korsakov A, Shatsky VS (2001) Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol 141:66–82

    CAS  Google Scholar 

  • Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302

    Article  CAS  Google Scholar 

  • Hokada T, Osanai Y, Toyoshima T, Owada M, Tsunogae T, Crowe WA (1999) Petrology and metamorphism of sapphirine-bearing aluminous gneisses from Tonagh Island in the Napier Complex, east Antarctica. Polar Geosci 12:49–72

    Google Scholar 

  • Hokada T, Misawa K, Shiraishi K, Suzuki S (2003) Mid to late Archaean (3.3–2.5 Ga) tonalitic crustal formation and high-grade metamorphism at Mt Riiser-Larsen, Napier Complex, east Antarctica. Precambr Res 127:215–228

    Article  CAS  Google Scholar 

  • Hokada T, Misawa K, Yokoyama K, Shiraishi K, Yamaguchi A (2004) SHRIMP and electron microprobe chronology of UHT mtamorphism in the Napier Complex, east Antarctica: implications for zircon growth at >1,000°C

  • Hollis JA, Harley SL (2002) New evidence for the peak temperatures and the near-peak pressure-temperature evolution of the Napier Complex. In: Gamble JA, Skinner DNB, Henrys S (eds) Proceedings of the 8th International Symposium on Antarctic Earth Sciences, The Royal Society of New Zealand, Wellington, pp 19–30

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallisation of protolith igneous zircon. J Metamorphic Geol 18:423–439

    Article  CAS  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630

    Article  CAS  Google Scholar 

  • James PR, Black LP (1981) A review of the structural evolution and geochronology of the Archaean Napier Complex of Enderby Land, Australian Antarctic Territory. Geol Soci Austr Special Publication 7:71–83

    Google Scholar 

  • Kelly NM, Clarke GL, Carson CJ, White RW (2000) Thrusting in the lower crust: evidence from the Oygarden Islands, Kemp Land, East Antarctica. Geol Mag 137:219–234

    Article  Google Scholar 

  • Kelly NM, Clarke GL, Fanning CM (2002) A two-stage evolution of the Neoproterozoic Rayner Structural Episode: new U–Pb SHRIMP constraints from the Oygarden Group, Kemp Land, East Antarctica. Precambr Res 116:301–330

    Article  Google Scholar 

  • Ludwig KR (1999) User’s manual for Isoplot/Ex, v2.3, a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Centre Special Publication No. 1a, p 52

  • Ludwig KR (2001) Squid v1.02—a user’s manual. Berkeley Geochronological Centre Special Publication No. 2, p 19

  • McCulloch MT, Black LP (1984) Sm-Nd isotopic systematics of Enderby Land granulites and evidence for the redistribution of Sm and Nd during metamorphism. Earth Planet Sci Lett 71:46-58

    Article  CAS  Google Scholar 

  • McLaren AC, Fitzgerald JD, Wlliams IS (1994) The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochim Cosmochim Acta 58:993–1005

    Article  CAS  Google Scholar 

  • Mezger K, Krogstad J (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Metamorphic Geol 15:127–140

    Article  CAS  Google Scholar 

  • Mojzsis SJ, Harrison TM (2002) Establishment of a 3.83 Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth Planet Sci Lett 202:563–576

    Article  CAS  Google Scholar 

  • Motoyoshi Y, Hensen BJ (1989) Sapphirine–quartz–orthopyroxene symplectites after cordierite in the Archaean Napier Complex, Antarctica: evidence for a counterclockwise PT path? Eur J Mineral 1:467–471

    CAS  Google Scholar 

  • Murali AV, Parthasarathy R, Mahadevan TM, Sankar Das M (1983) Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—a case study on Indian zircons. Geochim Cosmochim Acta 47:2047–2052

    Article  CAS  Google Scholar 

  • Myers JS, Crowley JL (2000) Vestiges of life in the oldest Greenland rocks? A review of early Archaean geology in the Godthabsfjord region, and reappraisal of field evidence for >3,850 Ma life on Akilia. Precambr Res 103:101–124

    Article  CAS  Google Scholar 

  • Nutman AP, Mojzsis SJ, Friend CRL (1997) Recognition of ≥3,850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochim Cosmochim Acta 61:2475–2484

    Article  CAS  PubMed  Google Scholar 

  • Osanai Y, Toyoshima T, Owada M, Tsunogae T, Hokada T, Crowe WA (1999) Geology of ultrahigh-temperature metamorphic rocks from Tonagh Island in the Napier Complex, East Antarctica. Polar Geosci 12:1–28

    Google Scholar 

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, Northeastern Minnesota: geochronological insights into physical, petrogenetic, palaeomagnetic, and tectonomagnetic processes associated with the 1.1 Ga midcontinental rift system. J Geophys Res 98:13997–14013

    CAS  Google Scholar 

  • Pan Y (1997) Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario. Can Mineral 35:105–118

    CAS  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    CAS  Google Scholar 

  • Roberts MP, Finger F (1997) Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322

    Article  CAS  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138

    Article  CAS  Google Scholar 

  • Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U–Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin Heidelberg New York, pp 373–400

    Google Scholar 

  • Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petrol 132:269–287

    Article  CAS  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    CAS  Google Scholar 

  • Sandiford M (1985) The origin of retrograde shear zones in the Napier Complex: implications for the tectonic evolution of Enderby Land, Antarctica. J Struct Geol 7:477–488

    Article  CAS  Google Scholar 

  • Sandiford M, Wilson CJL (1984) The structural evolution of the Fyfe Hills-Khmara Bay region, Enderby Land, east Antarctica. Aust J Earth Sci 31:403–426

    Google Scholar 

  • Schaltegger U, Fanning CM, Gunther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallisation of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201

    Article  CAS  Google Scholar 

  • Sheraton JW, Black LP (1983) Geochemistry of Precambrian gneisses: relevance for the evolution of the East Antarctic Shield. Lithos 16:273–296

    Article  CAS  Google Scholar 

  • Sheraton JW, Offe LA, Tingey RJ, Ellis DJ (1980) Enderby Land, Antarctica—an unusual Precambrian high-grade metamorphic terrain. J Geol Soci Austr 27:1–18

    Google Scholar 

  • Sheraton JW, Tingey RJ, Black LP, Offe LA, Ellis DJ (1987) Geology of an unusual Precambrian high-grade metamorphic terrane—Enderby Land and western Kemp Land, Antarctica. Australian Bureau of Mineral Resources Bulletin 223, p 51

  • Shiraishi K, Ellis DJ, Fanning CM, Hiroi Y, Kagami H, Motoyoshi Y (1997) Re-examination of the metamorphic and protolith ages if the Rayner Complex, Antarctica: evidence for the Cambrian (Pan-African) regional metamorphic event. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp 79–88

    Google Scholar 

  • Suzuki S (2000) Geochemistry and geochronology of ultra-high temperature metamorphic rocks from the Mount Riiser-Larsen area in the Archaean Napier Complex, East Antarctica. Unpub. PhD thesis, The Graduate University for Advanced Studies, Tokyo

  • Vavra G (1990) On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study. Contrib Mineral Petrol 106:90–99

    CAS  Google Scholar 

  • Vavra G (1994) Systematics of internal zircon morphology in major Variscan granitoid types. Contrib Mineral Petrol 117:331–344

    CAS  Google Scholar 

  • Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallisation during polyphase Late Carboniferous to Triassic metamorphism in granulites of Ivrea Zone (Southern Alps): an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358

    Article  CAS  Google Scholar 

  • Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Amer Mineral 80:1179–1187

    CAS  Google Scholar 

  • Whitehouse MJ, Fedo CM (2003) Deformation features and critical field relationships of early Archaean rocks, Akilia, southwest Greenland. Precambr Res 126:259–271

    Article  CAS  Google Scholar 

  • Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204:333–346

    Article  CAS  Google Scholar 

  • Whitehouse MJ, Kamber BS (2003) A rare earth element study of complex zircons from early Archaean Amitsoq gneisses, Godthabsfjord, south-west Greenland. Precambr Res 126:363–377

    Article  CAS  Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74

    CAS  Google Scholar 

  • Wiedenbeck M (1995) An example of reverse discordance during ion microprobe zircon dating: an artifact of enhanced ion yields from a radiogenic labile Pb. Chem Geol 125:197–218

    Article  CAS  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. Rev Econ Geol 7:1–35

    Google Scholar 

  • Williams IS, Compston W, Black LP, Ireland TR, Foster JJ (1984) Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb–Pb, U–Pb, and Th–Pb ages. Contrib Mineral Petrol 88:322–327

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Lance Black (Geoscience Australia) for providing the grain mounts and samples and permission to re-use previously collected data. Access to SIMS was provided through NSS support at the National Environment Research Council Ion Microprobe facility, University of Edinburgh. Other analytical costs were supported through a Royal Society grant to SLH. The authors would also like to thank Nicola Cayzer (SEM), Peter Hill (EMP), Richard Hinton and John Craven (SIMS) for analytical assistance at the School of GeoSciences, University of Edinburgh, and Mark Fanning, Research School of Earth Sciences, ANU, for assistance with SHRIMP II. NMK would like to acknowledge salary and additional support through a Royal Society of Edinburgh/SEELLD Research Fellowship. The authors would like to thank E. Grew and M. Whitehouse for careful and constructive reviews of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel M. Kelly.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, N.M., Harley, S.L. An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol 149, 57–84 (2005). https://doi.org/10.1007/s00410-004-0635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0635-6

Keywords

Navigation