Skip to main content
Log in

Osumilite-sapphirine-quartz granulites from Enderby Land Antarctica — Mineral assemblages and reactions

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The pre-Cambrian granulites of Enderby Land Antarctica, contain coexisting spinel-quartz, sapphirine-quartz, hypersthene-sillimanite-quartz and osumilite on a regional extent. Osumilite is present in a variety of mineral assemblages, most of which are documented in granulites for the first time. The mineral assemblages, reactions and compositional zoning in minerals are discussed in terms of continuous and discontinuous reactions in response to changing conditions of metamorphism. The development of many of the mineral coronas can be explained by continuous rather than discontinuous reactions, due to the effects of Mg-Fe and (Mg,Fe)-2Al exchange equilibria with decreasing temperature. The highest P-T conditions of metamorphism (8–10 kb, 900 °–980 ° C, Ellis, in preparation) were beyond the stability limit of coexisting garnet-cordierite. Secondary cordierite has developed through a large number of mineral reactions in response to cooling of these granulites.

A theoretical analysis of the phase relations involving osumilite in the chemical systems K2O-MgO-Al2O3-SiO2 and K2O-MgO-FeO-Al2O3-SiO2 is presented. In the pure Mg-system the lower temperature stability limit of Mg-osumilite is inferred to be defined with increasing pressure by the reactions Os→Cd+En+Kfeld+Qtz, Os→Sa+En+Kfeld+Qtz, Os→Sill+En+Kfeld+Qtz. In iron-bearing systems an important reaction involving osumilite is Os+Gt→Cd+Hy+Kfeld+Qtz.

At moderate temperatures and pressures, osumilite is limited to rocks which lie on the Mg-rich side of the Cd-Hy stable tie line on an AFM diagram. At higher pressures and temperatures osumilite occurs in a widerrange of rock compositions because of the stability of coexisting garnet and osumilite. Petrographic data, as well as chemographic relations indicate that for many common rock compositions, garnet, cordierite, hypersthene, sapphirine and sillimanite cannot coexist with both osumilite and K-feldspar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arima, M.: Phase equilibria in the system MgSiO3-Al2O3-Fe2O3 at high temperatures and pressures, with special reference to the solubility of Al2O3 and Fe2O3 in enstatite. J. Fac. Sci., Hokkaido Univ., Ser. 4: 18, 305–338 (1978)

    Google Scholar 

  • Berg, J.H., Wheeler, E.P., II.: Osumilite of deep-seated origin in the contact aureole of the Anorthositic Nain Complex, Labrador. Am. Mineral. 61, 29–37 (1976)

    Google Scholar 

  • Bondarenko, I.P.: Hypersthene-kyanite association in garnet-sapphirine granulites; thermodynamic conditions of their formation. Int. Geol. Rev. 14, 466–472 (1972)

    Google Scholar 

  • Brown, G.E., Gibbs, G.V.: Refinement of the crystal structure of osumilite. Am. Mineral. 54, 101–116 (1969)

    Google Scholar 

  • Carmichael, I.S.E.: The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesium silicates. Contrib. Mineral. Petrol. 14, 36–64 (1967)

    Google Scholar 

  • Chatterjee, N.D., Johannes, W.: Thermal stability and standard thermodynamic properties of synthetic 2M1 — muscovite, K Al2[AlSi3O10(OH)2]. Contrib. Mineral. Petrol. 48, 89–114 (1974)

    Google Scholar 

  • Chatterjee, N.D., Schreyer, W.: The reaction enstatite+sillimanite=sapphirine+quartz in the system MgO-Al2O3-SiO2. Contrib. Mineral. Petrol. 36, 49–62 (1972)

    Google Scholar 

  • Chinner, G.A., Dixon, P.D.: Irish osumilite. Mineral. Mag. 39, 189–192 (1973)

    Google Scholar 

  • Crohn, P.W.: A contribution to the geology and glaciology of the western part of Australian Antarctic Territory. Bur. Mineral. Resour. Austr. Bull. 52, (1959)

  • Currie, K.L.: The reaction 3 cordierite=2 garnet+4 sillimanite+5 quartz as a geological thermometer in the Opinicon Lake region, Ontario. Contrib. Mineral. Petrol. 33, 215–266 (1971)

    Google Scholar 

  • Dallwitz, W.B.: Co-existing sapphirine and quartz in granulite from Enderby Land, Antarctica. Nature 219, 476–477 (1968)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-forming minerals. London: Longmans, 1962

    Google Scholar 

  • Ellis, D.J.: Granulites from Enderby Land, Antarctica. The application of experimentally determined cation partition data to estimation of pressures and temperatures of metamorphism. Unpubl. Ph. D. thesis, University of Tasmania, Hobart (1979)

    Google Scholar 

  • Ellis, D.J.: Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica — P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust (in preparation)

  • Goldman, D.S., Rossman, G.R.: The site distribution of iron and anomalous biaxiality in osumilite. Am. Mineral. 63, 490–498 (1978)

    Google Scholar 

  • Grew, E.S.: Geological studies of Precambrian basement around Molodezhnaya Station, Enderby Land. Antarctic J. of the U.S. 10, 245–248 (1975)

    Google Scholar 

  • Hensen, B.J., Essene, E.J.: Stability of pyrope-quartz in the system MgO-Al2O3-SiO2. Contrib. Mineral. Petrol. 30, 72–83 (1971)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of cordierite and garnet in pelitic compositions at high pressures and temperatures. I. Compositions with excess alumino-silicate. Contrib. Mineral. Petrol. 33, 309–330 (1971)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of cordierite and garnet in pelitic compositions at high pressures and temperatures. II. Compositions without excess aluminosilicate. Contrib. Mineral. Petrol. 35, 331–354 (1972)

    Google Scholar 

  • Hensen, B.J., Green, D.H.: Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. III. Synthesis of experimental data and geological applications. Contrib. Mineral. Petrol. 38, 151–166 (1973)

    Google Scholar 

  • Hensen, B.J.: Cordierite-garnet bearing assemblages as geothermometers and barometers in granulite facies terranes. Tectonophysics 43, 73–88 (1977)

    Google Scholar 

  • Hensen, B.J.: The stability of osumilite in high grade metamorphic rocks. Contrib. Mineral. Petrol. 64, 197–204 (1978)

    Google Scholar 

  • Hermans, G.A.E.M., Hakstege, A.L., Jansen, J.B.H. Poorter, R.P.E.: Sapphirine occurrence near Vikeso in Rogaland, South-western Norway. Nor. Geol. Tidsskr. 56, 397–412 (1976)

    Google Scholar 

  • Hess, P.C.: The metamorphic paragenesis of cordierite in pelitic rocks. Contrib. Mineral. Petrol. 24, 191–207 (1969)

    Google Scholar 

  • Holdaway, M.J.: Mutual compatibility relations of the Fe+2-Mg-Al silicates at 800 ° C and 3 kb. Am. J. Sci. 276, 285–308 (1976)

    Google Scholar 

  • Holdaway, M.J., Lee, S.M.: Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contrib. Mineral. Petrol. 63, 175–198 (1977)

    Google Scholar 

  • Kamenev, E.N.: Geological structure of Enderby Land. In: Antarctic Geology and Geophysics (R.J. Adie, ed.), pp. 579–583. Oslo: Universitetsforlaget, 1972

    Google Scholar 

  • Kamenev, E.N.: The geology of Enderby Land (in Russian). Acad. Sci USSR, Comm. on Ant. Res. Rep. 14 (1975)

  • Khan, A.A., Baur, W.H., Forbes, W.C.: Synthetic magnesium merrihueite, dipotassium pentamagnesium dodecasilicate: a tetrahedral magnesiosilicate framework crystal structure. Acta Crystallogr. B28, 267–272 (1972)

    Google Scholar 

  • Luth, W.C.: The systems NaAlSi3O8-SiO2 and KalSi3O8-SiO2 to 20 kb and the relationship between H2O content, pH2O and P T in granitic magmas. Am. J. Sci., Schairer Vol. 267-A, 325–341 (1969)

    Google Scholar 

  • Maijer, C., Jansen, J.B.H., Wevers, J., Poorter, R.P.E.: Osumilite, a mineral new to Norway. Contribution to the Mineralogy of Norway, No. 63. Nor. Geol. Tidsskr. 57, 187–188 (1977)

    Google Scholar 

  • Marakushev, A.A., Kudryavtsev, V.A.: Hypersthene-sillimanite paragenesis and its petrological implications. Dokl. Akad. Nauk. SSSR 164, 145–148 (1965)

    Google Scholar 

  • McLeod, I.R.: Report on geological and glaciological work by the 1958 Australian National Antarctic Research Expedition. Bur. Mineral. Resour. Austr. Rec. 1959/131 (unpubl.)

  • McLeod, I.R.: An outline of the geology of the sector from longitude 45 ° to 80 ° E., Antarctica. In: Antarctic Geology (R.J. Adie, ed.). Amsterdam: North Holland, 237–247 (1964)

    Google Scholar 

  • McLeod, I.R., Trail, D.S., Cook, P.J., Wallis, G.R.: Geological work in Antarctica, January to March. 1965. Bur. Mineral. Resour. Austr. Rec. 1966/9 (unpubl.)

  • Mivashiro, A.: Osumilite, a new silicate mineral and its crystal structure. Am. Mineral. 41, 104–116 (1956)

    Google Scholar 

  • Moore, P.B.: The crystal structure of sapphirine. Am. Mineral. 54, 31–49 (1969)

    Google Scholar 

  • Morse, S.A., Talley, J.H.: Sapphirine reactions in deep seated granulites near Wilson Lake, Central Labrador, Canada. Earth Planet. Sci. Lett. 10, 325–328 (1971)

    Google Scholar 

  • Newton, R.C.: An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. J. Geol. 80, 398–420 (1972)

    Google Scholar 

  • Olsen, E., Bunch, T.E.: Compositions of natural osumilites. Am. Mineral. 55, 875–879 (1970)

    Google Scholar 

  • Pieters, P.E., Wyborn, D.: Geological work in Antarctica — 1974/75. Bur. Mineral. Res. Rec. 1977/16 (1977)

  • Reed, S.J.B., Ware, N.G.: Quantitative electron microprobe analysis of silicates using energy dispersive X-ray spectrometry. J. Petrol. 16, 499–519 (1975)

    Google Scholar 

  • Rossi, G.: Ritrovamento della osumilite in uno riolite de Monte Arci. Rend. Soc. Mineral. Ital. 19, 187–193 (1963)

    Google Scholar 

  • Ruker, R.A.: Geological reconnaissance in Enderby Land and Southern Prince Charles Mountains. Antarctica. Bur. Mineral. Resour. Austr. Rec. 1963/154 (unpubl.)

  • Schreinemakers, F.A.H.: In-, mono-, and divariant equilibria. Penn. State Univ. Publ. 2, 322 pp. (1965)

  • Schreyer, W., Yoder, H.S.: Hydrous Mg-Cordierite. Carnegie Inst. Washington, Yearb. 59, 91–94 (1960)

    Google Scholar 

  • Schreyer, W., Yoder, H.S.: The system Mg-cordierite-H2O and related rocks. Neues Jahrb. Mineral., Abh. 101, 271–342 (1964)

    Google Scholar 

  • Schreyer, W., Seifert, F.: Metastability of an osumilite end member in the system K2O-MgO-Al2O3-SiO2-H2O and its possible bearing on the rarity of natural osumilites. Contrib. Mineral. Petrol. 14, 343–358 (1967)

    Google Scholar 

  • Schreyer, W., Seifert, F.: Compatibility relations of the aluminium silicates in the system MgO-Al2O3-SiO2-H2O and K2O-MgO-Al2O3-SiO2-H2O at high pressures. Am. J. Sci. 267, 371–388 (1969)

    Google Scholar 

  • Schreyer, W., Abraham, K.: Peraluminous sapphirine as a metastable reaction product in kyanite-gedrite-talc schist from Sar e Sang, Afghanistan. Mineral. Mag. 40, 171–180 (1975)

    Google Scholar 

  • Schreyer, W., Abraham, K.: Natural boron-free kornerupine and its breakdown products in a sapphirine rock of the Limpopo Belt, Southern Africa. Contrib. Mineral. Petrol. 54, 109–126 (1976)

    Google Scholar 

  • Seifert, F.: Low-temperature Compatibility Relations of Cordierite in Haplopelites of the system K2O-MgO-Al2O3-SiO2-H2O. J. Petrol. 11, 73–99 (1970)

    Google Scholar 

  • Seifert, F., Schreyer, W.: Lower temperature stability limit of Mg cordierite in the range 1–7 kb water pressure: a redetermination. Contrib. Mineral. Petrol. 27, 225–238 (1970)

    Google Scholar 

  • Seifert, F.: Stability of the assemblage cordierite+K feldspar- +quartz. Contrib. Mineral. Petrol. 57, 179–185 (1976)

    Google Scholar 

  • Sheraton, J.W., Offe, L.A.: Geological work in Antarctica — 1976. Bur. Mineral. Resour. Austr. Rec. 1977/60 (1977)

  • Sheraton, J.W., Offe, L.A., Tingey, R.J., Ellis, D.J.: Enderby Land, Antarctica — An unusual precambrian high-grade metamorphic terrain (in press) J. Geol. Soc. Austr.

  • Sobotovich, E.V., Kamenev, E.N., Komatitsyy, A.A., Rudnik, V.A.: The oldest rocks of Antarctica (Enderby Land). Int. Geol. Rev. 18, 371–388 (1976)

    Google Scholar 

  • Thompson, A.B.: Mineral reactions in pelitic rocks. II. Calculations of some P-T-X (Fe-Mg) phase relations. Am. J. Sci. 276, 425–454 (1976)

    Google Scholar 

  • Tingey, R.J.: The geology and geological evolution of the Prince Charles Mountains, Antarctica. In: Antarctic Geoscience (C. Craddock, ed.) Proceedings of the third symposium on Antarctic geology and geophysics. Madison: Uni. Wisconsin Press (in preparation, 1977)

    Google Scholar 

  • Turnock, A.C., Eugster, H.P.: Fe-Al oxides: phase relationships below 1000 ° C. J. Petrol. 3, 533–565 (1962)

    Google Scholar 

  • Zen, E-An.: Construction of pressure-temperature diagrams for multicomponent systems after the method of Schreinemakers — a geometric approach. U.S. Geol. Surv. Bull. 1225, 56p. (1966)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published with the permission of the Director, Bureau of Mineral Resources

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, D.J., Sheraton, J.W., England, R.N. et al. Osumilite-sapphirine-quartz granulites from Enderby Land Antarctica — Mineral assemblages and reactions. Contr. Mineral. and Petrol. 72, 123–143 (1980). https://doi.org/10.1007/BF00399473

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399473

Keywords

Navigation