Skip to main content

Advertisement

Log in

Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The vasopressin- and oxytocin-degrading enzyme insulin-regulated aminopeptidase (IRAP) is expressed in various organs including the brain. However, knowledge about its presence in human hypothalamus is fragmentary. Functionally, for a number of reasons (genetic linkage, hydrolysis of oxytocin and vasopressin, its role as angiotensin IV receptor in learning and memory and others) IRAP might play a role in schizophrenia. We studied the regional and cellular localization of IRAP in normal human brain with special emphasis on the hypothalamus and determined numerical densities of IRAP-expressing cells in the paraventricular, supraoptic and suprachiasmatic nuclei in schizophrenia patients and controls. By using immunohistochemistry and Western blot analysis, IRAP was immunolocalized in postmortem human brains. Cell countings were performed to estimate numbers and numerical densities of IRAP immunoreactive hypothalamic neurons in schizophrenia patients and control cases. Shape, size and regional distribution of IRAP-expressing cells, as well the lack of co-localization with the glia marker glutamine synthetase, show that IRAP is expressed in neurons. IRAP immunoreactive cells were observed in the hippocampal formation, cerebral cortex, thalamus, amygdala and, abundantly, hypothalamus. Double labeling experiments (IRAP and oxytocin/neurophysin 1, IRAP with vasopressin/neurophysin 2) revealed that IRAP is present in oxytocinergic and in vasopressinergic neurons. In schizophrenia patients, the numerical density of IRAP-expressing neurons in the paraventricular and the suprachiasmatic nuclei is significantly reduced, which might be associated with the reduction in neurophysin-containing neurons in these nuclei in schizophrenia. The pathophysiological role of lowered hypothalamic IRAP expression in schizophrenia remains to be established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Aka:

Also known as

AT IV:

Angiotensin IV

AVP:

Arginine vasopressin

BMI:

Body mass index

CSF:

Cerebrospinal fluid

DSM-IV:

Diagnostic and statistical manual of mental disorders fourth edition

EDTA:

Ethylene diamine tetraacetic acid

Fx:

Fornix

GADPH:

Glyceraldehyde-3-phosphate dehydrogenase

GS:

Glutamine synthetase

GLUT 4:

Glucose transporter 4

IgG:

Immunoglobulin G

IRAP:

Insulin-regulated aminopeptidase

IRAP 11-P:

IRAP blocking peptide 11-P

kDA:

Kilodalton

Leu-enkephalin:

Leucine-enkephalin

LVV-H7:

Human Leu-Val-Val-hemorphin 7

MHC:

Major histocompatibility complex

Met-enkephalin:

Methionine-enkephalin

OT:

Oxytocin

OTr:

Optic tract

PBS:

Phosphate-buffered saline

PeVN:

Periventricular nucleus

PMSF:

Phenyl methylsulfonyl fluoride

PC:

Pearson’s correlation

PVN:

Paraventricular nucleus

SCN:

Suprachiasmatic nucleus

Schizo:

Schizophrenia (used in Table 3)

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SON:

Supraoptic nucleus

SONdl:

Dorsolateral supraoptic nucleus

SONdm:

Dorsomedial supraoptic nucleus

SONvm:

Ventromedial supraoptic nucleus

TBS:

TRIS-buffered saline

TRIS:

Tris(hydroxymethyl)-aminomethane

V3:

Third ventricle

VIP:

Vasoactive intestinal peptide

References

  1. Carbon M, Correll CU (2014) Thinking and acting beyond the positive: the role of the cognitive and negative symptoms in schizophrenia. CNS Spectr Suppl 1:38–52. doi:10.1017/S1092852914000601

    Google Scholar 

  2. Shilling PD, Feifel D (2016) Potential of oxytocin in the treatment of schizophrenia. CNS Drugs 30:193–208. doi:10.1007/s40263-016-0315-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frank E, Landgraf R (2008) The vasopressin system–from antidiuresis to psychopathology. Eur Pharmacol 583:226–242. doi:10.1016/j.ejphar.2007.11.063

    Article  CAS  Google Scholar 

  4. Rubin LH, Carter CS, Bishop JR, Pournajafi-Nazarloo H, Drogos LL, Hill SK, Ruocco AC, Keedy SK, Reilly JL, Keshavan MS, Pearlson GD, Tamminga CA, Gershon ES, Sweeney JA (2014) Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. Schizophr Bull 40:1374–1384. doi:10.1093/schbul/sbu

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rich ME, Caldwell HK (2015) A role for oxytocin in the etiology and treatment of schizophrenia. Front Endocrinol 6(90):2015. doi:10.3389/fendo.2015.00090 (eCollection 2015)

    Google Scholar 

  6. Feifel D, Shilling PD, MacDonald K (2016) A review of oxytocin’s effects on the positive, negative, and cognitive domains of schizophrenia. Biol Psychiatry 79:222–233. doi:10.1016/j.biopsych.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  7. Uhrig S, Hirth N, Broccoli L, von Wilmsdorff M, Bauer M, Sommer C, Zink M, Steiner J, Frodl T, Malchow B, Falkai P, Spanagel R, Hansson AC, Schmitt A (2016) Reduced oxytocin receptor gene expression and binding sites in different brain regions in schizophrenia: a post-mortem study. Schizophr Res. doi:10.1016/j.schres.2016.04.019

    PubMed  Google Scholar 

  8. Oya K, Matsuda Y, Matsunaga S, Kishi T, Iwata N (2016) Efficacy and safety of oxytocin augmentation therapy for schizophrenia: an updated systematic review and meta-analysis of randomized, placebo-controlled trials. Eur Arch Psychiatry Clin Neurosci 26:439–450. doi:10.1007/s00406-015-0634-9

    Article  Google Scholar 

  9. Davis MC, Green MF, Lee J, Horan WP, Senturk D, Clarke AD, Marder SR (2014) Oxytocin-augmented social cognitive skills training in schizophrenia. Neuropsychopharmacology 39:2070–2077. doi:10.1038/npp.2014.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cacciotti-Saija C, Langdon R, Ward PB, Hickie IB, Scott EM, Naismith SL, Moore L, Alvares GA, Redoblado Hodge MA, Guastella AJ (2015) A double-blind randomized controlled trial of oxytocin nasal spray and social cognition training for young people with early psychosis. Schizophr Bull 4:483–493. doi:10.1093/schbul/sbu094

    Article  Google Scholar 

  11. Michalopoulou PG, Averbeck BB, Kalpakidou AK, Evans S, Bobin T, Kapur S, Shergill SS (2015) The effects of a single dose of oxytocin on working memory in schizophrenia. Schizophr Res 162:62–63. doi:10.1016/j.schres.2014.12.029

    Article  PubMed  PubMed Central  Google Scholar 

  12. Diwakarla S, Nylander E, Grönbladh A, Vanga SR, Khan YS, Gutiérrez-de-Terán H, Ng L, Pham V, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Andersson H, Engen K, Rosenström U, Larhed M, Åqvist J, Chai SY, Hallberg M (2016) Binding to and inhibition of insulin-regulated aminopeptidase by macrocyclic disulfides enhances spine density. Mol Pharmacol 89:413–424. doi:10.1124/mol.115.102533

    Article  CAS  PubMed  Google Scholar 

  13. Souza RP, Ismail P, Meltzer HY, Kennedy JL (2010) Variants in the oxytocin gene and risk for schizophrenia. Schizophr Res 121(1–3):279–280. doi:10.1016/j.schres.2010.04.019

    Article  PubMed  Google Scholar 

  14. Ebstein RP, Knafo AP, Mankuta D, Chew SH, Lai PS (2012) The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm Behav 61:359–379. doi:10.1016/j.yhbeh.2011.12.014

    Article  CAS  PubMed  Google Scholar 

  15. Teltsh O, Kanyas-Sarner K, Rigbi A, Greenbaum L, Lerer B, Kohn Y (2012) Oxytocin and vasopressin genes are significantly associated with schizophrenia in a large Arab-Israeli pedigree. Int J Neuropsychopharmacol 15:309–319. doi:10.1017/S1461145711001374

    Article  CAS  PubMed  Google Scholar 

  16. Chen FS, Kumsta R, Dvorak F, Domes G, Yim OS, Ebstein RP, Heinrichs M (2015) Genetic modulation of oxytocin sensitivity: a pharmacogenetic approach. Transl Psychiatry 5:e664. doi:10.1038/tp.2015.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldman M, Marlow-O’Connor M, Torres I, Carter CS (2008) Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophr Res 98:247–255

    Article  PubMed  Google Scholar 

  18. Jobst A, Dehning S, Ruf S, Notz T, Buchheim A, Henning-Fast K, Meißner D, Meyer S, Bondy B, Müller N, Zill P (2014) Oxytocin and vasopressin levels are decreased in the plasma of male schizophrenia patients. Acta Neuropsychiatr 26:347–355. doi:10.1017/neu.2014.20

    Article  PubMed  Google Scholar 

  19. Ryan MC, Sharifi N, Condren R, Thakore JH (2004) Evidence of basal pituitary–adrenal overactivity in first episode, drug naïve patients with schizophrenia. Psychoneuroendocrinology 29:1065–1070

    Article  CAS  PubMed  Google Scholar 

  20. Wied De, Sigling HO (2002) Neuropeptides involved in the pathophysiology of schizophrenia and major depression. Neurotox Res 4:453–468

    Article  PubMed  Google Scholar 

  21. Krishnamurthy D, Harris LW, Levin Y, Koutroukides TA, Rahmoune H, Pietsch S, Vanattou-Saifoudine N, Leweke FM, Guest PC, Bahn S (2013) Metabolic, hormonal and stress-related molecular changes in post-mortem pituitary glands from schizophrenia subjects. World J Biol Psychiatry 14:478–489. doi:10.3109/15622975.2011.601759

    Article  PubMed  Google Scholar 

  22. Frederiksen SO, Ekman R, Gottfries CG, Widerlov E, Jonsson S (1991) Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not in the hypothalamus of brains from schizophrenics. Acta Psychiatr Scand 83:273–277

    Article  CAS  PubMed  Google Scholar 

  23. Mai JK, Berger K, Sofroniew MV (1993) Morphometric evaluation of neurophysin-immunoreactivity in the human brain: pronounced inter-individual variability and evidence for altered staining patterns in schizophrenia. J Hirnforsch 34:133–154

    CAS  PubMed  Google Scholar 

  24. Wallis MG, Lankford MF, Keller SR (2007) Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293:E1092–E1102

    Article  CAS  PubMed  Google Scholar 

  25. Nakada TA, Russell JA, Wellman H, Boyd JH, Nakada E, Thain KR, Thair SA, Hirasawa H, Oda S, Walley KR (2011) Leucyl/cystinyl aminopeptidase gene variants in septic shock. Chest 139:1042–1049

    Article  CAS  PubMed  Google Scholar 

  26. Carrera-González MP, Ramírez-Expósito MJ, de Saavedra JM, Sánchez-Agesta R, Mayas MD, Martínez-Martos JM (2011) Hypothalamus–pituitary–thyroid axis disruption in rats with breast cancer is related to an altered endogenous oxytocin/insulin-regulated aminopeptidase (IRAP) system. Tumour Biol 32:543–549. doi:10.1007/s13277-010-0149-y

    Article  PubMed  Google Scholar 

  27. Loyens E, De Bundel D, Demaegdt H, Chai SY, Vanderheyden P, Michotte Y, Gard P, Smolders I (2013) Antidepressant-like effects of oxytocin in mice are dependent on the presence of insulin-regulated aminopeptidase. Int J Neuropsychopharmacol 16:1153–1163. doi:10.1017/S1461145712001149

    Article  CAS  PubMed  Google Scholar 

  28. Bauer K (2004) Cystinyl aminopeptidase, oxytocinase and insulin-regulated aminopeptidase. In: Barret AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, 2nd edn. Elsevier Academic Press, London, pp 307–313

    Google Scholar 

  29. Fernández-Atucha A, Echevarría E, Larrinaga G, Gil J, Martínez-Cengotitabengoa M, González-Pinto AM, Irazusta J, Seco J (2015) Plasma peptidases as prognostic biomarkers in patients with first-episode psychosis. Psychiatry Res 228(2):197–202. doi:10.1016/j.psychres.2015.04.027

    Article  PubMed  Google Scholar 

  30. Prieto I, Villarejo AB, Segarra AB, Wangensteen R, Banegas I, de Gasparo M, Vanderheyden P, Zorad S, Vives F, Ramírez-Sánchez M (2015) Tissue distribution of CysAP activity and its relationship to blood pressure and water balance. Life Sci 134:73–78. doi:10.1016/j.lfs.2015.04.023

    Article  CAS  PubMed  Google Scholar 

  31. Chissoe S, Ehm MG, Jean St. P (2008) Genes associated with schizophrenia. US Patent Appl 20080176239; p 80

  32. Sanders AR, Göring HH, Duan J, Drigalenko EI, Moy W, Freda J, He D, Shi JMGS, Gejman PV (2013) Transcriptome study of differential expression in schizophrenia. Hum Mol Genet 22:5001–50014. doi:10.1093/hmg/ddt350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chai SY, Fernando R, Ye S, Peck GR, Albiston AL (2012) Insulin-regulated aminopeptidase. In: Hopper N, Lendeckel U (eds) Aminopeptidases in biology and disease. Springer, New York, pp 61–82

    Google Scholar 

  34. LaCrosse AL, Olive MF (2013) Neuropeptide systems and schizophrenia. CNS Neurol Disord Drug Targets 12(5):619–632

    Article  CAS  PubMed  Google Scholar 

  35. Stragier B, Demaegdt H, De Bundel D, Smolders I, Sarre S, Vauquelin G, Ebinger G, Michotte Y, Vanderheyden P (2007) Involvement of insulin-regulated aminopeptidase and/or aminopeptidase N in the angiotensin IV-induced effect on dopamine release in the striatum of the rat. Brain Res 1131:97–105

    Article  CAS  PubMed  Google Scholar 

  36. Cachope R, Cheer JF (2014) Local control of striatal dopamine release. Front Behav Neurosci 8:188. doi:10.3389/fnbeh.2014.00188 (eCollection 2014)

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saveanu L, van Endert P (2012) The role of insulin-regulated aminopeptidase in MHC class I antigen presentation. Front Immunol 21(3):57. doi:10.3389/fimmu.2012.00057 (eCollection 2012)

    Google Scholar 

  38. McAllister AK (2014) Major histocompatibility complex I in brain development and schizophrenia. Biol Psychiatry 75:262–268. doi:10.1016/j.biopsych.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  39. Fernando RN, Albiston AL, Chai SY (2008) The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus–potential role in modulation of glucose uptake in neurones? Eur J Neurosci 28:588–598. doi:10.1111/j.1460-9568.2008.06347.x

    Article  PubMed  Google Scholar 

  40. Hazlett EA, Buchsbaum MS, Haznedar MM, Singer MB, Germans MK, Schnur DB, Jimenez EA, Buchsbaum BR, Troyer BT (1998) Prefrontal cortex glucose metabolism and startle eyeblink modification abnormalities in unmedicated schizophrenia patients. Psychophysiology 35:186–198

    Article  CAS  PubMed  Google Scholar 

  41. Chai SY, Bastias MA, Clune EF, Matsacos DJ, Mustafa T, Lee JH, McDowall SG, Paxinos G, Mendelsohn FA, Albiston AL (2000) Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography. J Chem Neuroanat 20:339–348

    Article  CAS  PubMed  Google Scholar 

  42. Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FA, Simpson RJ, Connolly LM, Chai SY (2001) Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626

    Article  CAS  PubMed  Google Scholar 

  43. Albiston AL, Fernando RN, Yeatman HR, Burns P, Ng L, Daswani D, Diwakarla S, Pham V, Chai SY (2010) Gene knockout of insulin-regulated aminopeptidase: loss of the specific binding site for angiotensin IV and age-related deficit in spatial memory. Neurobiol Learn Mem 93:19–30. doi:10.1016/j.nlm.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  44. Andersson H, Hallberg M (2012) Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens 2012:789671. doi:10.1155/2012/789671

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bohlen Von, Halbach O (2003) Angiotensin IV in the central nervous system. Cell Tissue Res 311:1–9

    Article  Google Scholar 

  46. Fernando RN, Larm J, Albiston AL, Chai SY (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J Comp Neurol 487:372–390

    Article  CAS  PubMed  Google Scholar 

  47. Tobin VA, Arechaga G, Brunton PJ, Russell JA, Leng G, Ludwig M, Douglas AJ (2014) Oxytocinase in the female rat hypothalamus: a novel mechanism controlling oxytocin neurones during lactation. J Neuroendocrinol 26:205–216. doi:10.1111/jne.12141

    Article  CAS  PubMed  Google Scholar 

  48. Müller S, Lendeckel U, Dobrowolny H, Steiner J, Bogerts B, Bernstein HG (2013) Some notes on insulin-regulated aminopeptidase in depression. Int J Neuropsychopharmacol 16:1877–1878. doi:10.1017/S1461145713000199

    Article  PubMed  Google Scholar 

  49. Bernstein HG, Lendeckel U, Dobrowolny H, Stauch R, Steiner J, Grecksch G, Becker A, Jirikowski GF, Bogerts B (2008) Beacon-like/ubiquitin-5-like immunoreactivity is highly expressed in human hypothalamus and increased in haloperidol-treated schizophrenics and a rat model of schizophrenia. Psychoneuroendocrinology. 33:340–351. doi:10.1016/j.psyneuen.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  50. Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P, Falkai P, Bogerts B (1998) Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 83:867–875

    Article  CAS  PubMed  Google Scholar 

  51. Mai JK, Paxinos G, Assheuer JK (2003) Atlas of the human brain. Elsevier Academic Press, Amsterdam

    Google Scholar 

  52. Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B (2015) Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci 9:273. doi:10.3389/fncel.2015.00273 (eCollection 2015)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bernstein HG, Heinemann A, Krell D, Dobrowolny H, Bielau H, Keilhoff G, Bogerts B (2005) Hypothalamic nitric oxide synthase in affective disorder: focus on the suprachiasmatic nucleus. Cell Mol Biol 51:279–284

    CAS  PubMed  Google Scholar 

  54. Gerendai I, Halász B (1997) Neuroendocrine asymmetry. Front Neuroendocrinol 18:354–381

    Article  CAS  PubMed  Google Scholar 

  55. Bernstein HG, Bannier J, Meyer-Lotz G, Steiner J, Keilhoff G, Dobrowolny H, Walter M, Bogerts B (2014) Distribution of immunoreactive glutamine synthetase in the adult human and mouse brain. Qualitative and quantitative observations with special emphasis on extra-astroglial protein localization. J Chem Neuroanat 61–62:33–50. doi:10.1016/j.jchemneu.2014.07.003

    Article  PubMed  Google Scholar 

  56. Toda S, Ando H, Nagasaka T, Tsukahara S, Nomura M, Kotani Y, Nomura S, Kikkawa F, Tsujimoto M, Mizutani S (2002) Existence of placental leucine aminopeptidase/oxytocinase/insulin-regulated membrane aminopeptidase in human endometrial epithelial cells. J Clin Endocrinol Metab 87:1384–1389

    Article  CAS  PubMed  Google Scholar 

  57. Bernstein HG, Keilhoff G, Steiner J, Dobrowolny H, Bogerts B (2010) The hypothalamus in schizophrenia research: no longer a wallflower existence. Open Neuroendocrinol J 3:59–67

    Article  CAS  Google Scholar 

  58. Malidelis YI, Panayotacopoulou MT, van Heerikhuize JJ, Unme-Hopa U, Kontostavlaki DP, Swaab DF (2005) Absence of a difference in the neurosecretory activity of supraoptic nucleus of vasopressin neurons of neuroleptic-treated schizophrenic patients. Neuroendocrinology 82:63–69

    Article  CAS  PubMed  Google Scholar 

  59. Purba JS, Hoogendijk WJ, Hofman MA, Swaab D (1996) Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 53:137–143. doi:10.1001/archpsyc.1996.01830020055007

    Article  CAS  PubMed  Google Scholar 

  60. Kasparek-Zymowska B, Zymowski Z, Biernacka K, Kucharska K, Rybakowski F (2016) Impaired social recognition in Asperger syndrome and anorexia nervosa. In search for endophenotypes of social cognition. Psychiatr Pol 50:533–542

    Article  Google Scholar 

  61. Theofanopoulou C (2016) Implications of oxytocin in human linguistic cognition: from genome to phenome. Front Neurosci. doi:10.3389/fnins.2016.00271

    PubMed  PubMed Central  Google Scholar 

  62. Almeida D (2015) Oxytocin: a neurohormone link to the epigenetics of early life adversity and suicide. Poster, RQSHA research day 2015, Quebec, Canada

  63. Japundžić-Žigon N (2013) Vasopressin and oxytocin in control of the cardiovascular system. Curr Neuropharmacol 11:218–230. doi:10.2174/1570159X11311020008

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shah JN, Qureshi SU, Jawaid A, Schulz PE (2012) Is there evidence for late cognitive decline in chronic schizophrenia? Psychiatr Q 83:127–144. doi:10.1007/s11126-011-9189-8

    Article  PubMed  Google Scholar 

  65. Engelmann M, Ebner K, Landgraf R, Wotjak CT (2006) Effects of Morris water maze testing on the neuroendocrine stress response and intrahypothalamic release of vasopressin and oxytocin in the rat. Horm Behav 50:496–501

    Article  CAS  PubMed  Google Scholar 

  66. Van Asselen M, Kessels RP, Neggers SF, Kappelle LJ, Frijns CJ, Postma A (2006) Brain areas involved in spatial working memory. Neuropsychologia 44:1185–1194

    Article  PubMed  Google Scholar 

  67. Dai J, Swaab DF, Buijs JM (1997) Distribution of vasopressin and vasoactive intestinal polypeptide (VIP) fibers in the human hypothalamus with special emphasis on suprachiasmatic nucleus efferent projections. J Comp Neurol 383:397–414

    Article  CAS  PubMed  Google Scholar 

  68. Sivukhina EV, Morozov IuE, Dolzhikov AA, Jirikowski GF, Grinevich V (2010) Comparison of vasopressin and oxytocin expressions in the hypothalamo-neurohypophysial system of patients with chronic heart failure. Horm Metab Res 42:56–60. doi:10.1055/s-0029-1234081

    Article  CAS  PubMed  Google Scholar 

  69. Trudel E, Bourque CW (2010) Central clock excites vasopressin neurons by waking osmosensory afferents during late sleep. Nat Neurosci 13:467–474. doi:10.1038/nn.2503

    Article  CAS  PubMed  Google Scholar 

  70. Trbovic SN (2010) Schizophrenia as a possible dysfunction of the suprachiasmatic nucleus. Med Hypotheses 74:127–131. doi:10.1016/j.mehy.2009.07.019

    Article  CAS  PubMed  Google Scholar 

  71. Keller SR (2004) Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull 27:761–764

    Article  CAS  PubMed  Google Scholar 

  72. Niwa M, Numaguchi Y, Ishii M, Kuwahata T, Kondo M, Shibata R, Miyata K, Oike Y, Murohara T (2015) IRAP deficiency attenuates diet-induced obesity in mice through increased energy expenditure. Biochem Biophys Res Commun 457:12–18. doi:10.1016/j.bbrc.2014.12.071

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Renate Stauch for her skillful assistance.

Authors contribution

H.-G. Bernstein designed the study, participated in cell countings, wrote the article; S. Müller involved in study design, participated in cell countings; H. Dobrowolny performed biostatistics; U. Lendeckel participated in biochemical and molecular work; A. Bukowska participated in biochemical and molecular work; G. Keilhoff involved in rat experiments; A. Becker involved in rat experiments; J. Steiner involved in study design; K. Trübner contributed pituitary glands; B. Bogerts involved in study design.

Funding source

This study was funded by the University of Magdeburg (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Gert Bernstein.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernstein, HG., Müller, S., Dobrowolny, H. et al. Insulin-regulated aminopeptidase immunoreactivity is abundantly present in human hypothalamus and posterior pituitary gland, with reduced expression in paraventricular and suprachiasmatic neurons in chronic schizophrenia. Eur Arch Psychiatry Clin Neurosci 267, 427–443 (2017). https://doi.org/10.1007/s00406-016-0757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0757-7

Keywords

Navigation