Skip to main content

Advertisement

Log in

Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Solar radiation is a very important exogenous factor in skin pathogenesis and can lead to the development of a number of skin disorders. UVB irradiation is known to induce oxidative stress, inflammation and especially DNA lesions in exposed cells. It is important, therefore, to identify agents that can offer protection against UVB-caused skin damage. Natural compounds have been studied for their possible ability to control/modulate various lifestyle-related diseases. The application of plant compounds/extracts with screening, antioxidant and anti-inflammatory activities may also successfully protect the skin against UV-caused injury. We assessed the potency of Prunella vulgaris extract (PVE) and its main phenolic acid component, rosmarinic acid (RA), to suppress UVB-induced (295–315 nm) alterations to human keratinocytes HaCaT using a solar simulator. Pre- and post-treatment of HaCaT cells with PVE (5–50 mg/l) and RA (0.18–1.8 mg/l) reduced breakage together with the apoptotic process. PVE and RA also significantly eliminated ROS production and diminished IL-6 release. Taken together, both PVE and RA prevent UVB-caused injury to keratinocytes. However their efficacy needs to be demonstrated in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ashoori F, Suzuki S, Zhou JH, Isshiki N, Miyachi Y (1994) Involvement of lipid peroxidation in necrosis of skin flaps and its suppression by ellagic acid. Plast Reconstr Surg 94:1027–1037

    Article  CAS  PubMed  Google Scholar 

  2. Aufiero BM, Talwer H, Young C, Krishnan M, Hatfield JS, Lee HK, Wong HK, Hamzavi I, Murakawa GJ (2006) Narrow-band UVB induces apoptosis in human keratinocytes. J Photochem Photobiol B 82:132–139

    Article  CAS  PubMed  Google Scholar 

  3. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  5. Dinkova-Kostova AT (2008) Phytochemicals as protectors against ultraviolet radiation: versatility of effects and mechanisms. Planta Med 74:1548–1559

    Article  CAS  PubMed  Google Scholar 

  6. El-Mahdy MA, Zhu Q, Wang QE, Wani G, Patnaik S, Zhao Q, Arafa el-S, Barakat B, Mir SN, Wani AA (2008) Naringenin protects HaCaT human keratinocytes against UVB-induced apoptosis and enhances the removal of cyclobutane pyrimidine dimers from the genome. Photochem Photobiol 84:307–316

    Google Scholar 

  7. Fan P, Lou H (2004) Effects of polyphenols from grape seeds on oxidative damage to cellular DNA. Mol Cell Biochem 267:67–74

    Article  CAS  PubMed  Google Scholar 

  8. Hanif S, Shamim U, Ullah MF, Azmi AS, Bhat SH, Hadi SM (2008) The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA. Toxicology 249:19–25

    Article  CAS  PubMed  Google Scholar 

  9. Ishida T, Sakaguchi I (2007) Protection of human keratinocytes from UVB-induced inflammation using root extract of Lithospermum erythrorhizon. Biol Pharm Bull 30:928–934

    Article  CAS  PubMed  Google Scholar 

  10. Jimenez F, Mitts TF, Liu K, Wang Y, Hinek A (2006) Ellagic and tannic acids protect newly synthesized elastic fibers from premature enzymatic degradation in dermal fibroblast cultures. J Invest Dermatol 126:1272–1280

    Article  CAS  PubMed  Google Scholar 

  11. Kapiszewska M, Sołtys E, Visioli F, Cierniak A, Zajac G (2005) The protective ability of the Mediterranean plant extracts against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content. J Physiol Pharmacol 56:183–197

    PubMed  Google Scholar 

  12. Kasai K, Yoshimura M, Koga T, Arii M, Kawasaki S (2006) Effects of oral administration of ellagic acid-rich pomegranate extract on ultraviolet-induced pigmentation in the human skin. J Nutr Sci Vitaminol (Tokyo) 52:383–388

    Article  CAS  Google Scholar 

  13. Khodarev NN, Sokolova IA, Vaughan AT (1998) Mechanisms of induction of apoptotic DNA fragmentation. Int J Radiat Biol 73:455–467

    Article  CAS  PubMed  Google Scholar 

  14. Kim SY, Kim SH, Shin HY, Lim JP, Chae BS, Park JS, Hong SG, Kim MS, Jo DG, Park WH, Shin TY (2007) Effects of Prunella vulgaris on mast cell-mediated allergic reaction and inflammatory cytokine production. Exp Biol Med (Maywood) 232:921–926

    CAS  Google Scholar 

  15. Kulms D, Schwarz T (2002) Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol 64:837–841

    Article  CAS  PubMed  Google Scholar 

  16. Lamaison JL, Petitjean-Freytet C, Carnat A (1991) Medicinal Laminaceae with antioxidant properties, a potential source of rosmarinic acid. Pharm Acta Helv 66:185–188

    CAS  PubMed  Google Scholar 

  17. Lee J, Jung E, Koh J, Kim YS, Park D (2008) Effect of rosmarinic acid on atopic dermatitis. J Dermatol 35:768–771

    Article  CAS  PubMed  Google Scholar 

  18. Maines MD (1998) Current protocols in toxicology. Wiley, USA

    Google Scholar 

  19. Melnikova VO, Ananthaswamy NH (2005) Cellular and molecular events leading to the development of skin cancer. Mutat Res 571:91–106

    CAS  PubMed  Google Scholar 

  20. Neradil J, Veselská R, Slanina J (2003) UVC-protective effect of caffeic acid on normal and transformed human skin cells in vitro. Folia Biol (Praha) 49:197–202

    CAS  Google Scholar 

  21. Ochu EE, Rothwell NJ, Waters CM (1998) Caspase mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70:2637–2640

    Article  CAS  PubMed  Google Scholar 

  22. Petersen M, Simmonds MS (2003) Rosmarinic acid. Phytochemistry 62:121–125

    Article  CAS  PubMed  Google Scholar 

  23. Petit-Frère C, Capulas E, Lyon DA, Norbury CJ, Lowe JE, Clingen PH, Riballo E, Green MH, Arlett CF (2000) Apoptosis and cytokine release induced by ionizing or ultraviolet B radiation in primary and immortalized human keratinocytes. Carcinogenesis 21:1087–1095

    Article  PubMed  Google Scholar 

  24. Poquet L, Clifford M, Williamson G (2008) Effect of dihydrocaffeic acid on UV irradiation of human keratinocyte HaCaT cells. Arch Biochem Biophys 476:196–204

    Article  CAS  PubMed  Google Scholar 

  25. Psotová J, Kolář M, Soušek J, Švagera Z, Vičar J, Ulrichová J (2003) Biological activities of Prunella vulgaris extract. Phytother Res 17:1082–1087

    Article  PubMed  Google Scholar 

  26. Psotová J, Svobodová A, Kolářová H, Walterová D (2006) Photoprotective properties of Prunella vulgaris and rosmarinic acid on human keratinocytes. J Photochem Photobiol B 84:167–174

    Article  PubMed  CAS  Google Scholar 

  27. Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, Paolino D, Bonina F (2000) In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm 199:39–47

    Article  CAS  PubMed  Google Scholar 

  28. Sander CS, Chang H, Hamm F, Elsner P, Thiele JJ (2004) Role of oxidative stress and the antioxidant network in cutaneous carcinogenesis. Int J Dermatol 43:326–335

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez-Campillo M, Gabaldon JA, Castillo J, Benavente-García O, Del Baño MJ, Alcaraz M, Vicente V, Alvarez N, Lozano JA (2009) Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol 47:386–392

    Article  PubMed  CAS  Google Scholar 

  30. Shimogaki H, Tanaka Y, Tamai H, Masuda M (2000) In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int J Cosmet Sci 22:291–303

    Article  CAS  PubMed  Google Scholar 

  31. Svobodová A, Psotová J, Walterová D (2003) Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147:137–145

    PubMed  Google Scholar 

  32. Svobodová A, Zdařilová A, Mališková J, Mikulková H, Walterová D, Vostálová J (2007) Attenuation of UVA-induced oxidative damage to human keratinocytes by silymarin. J Dermatol Sci 46:21–30

    Article  PubMed  CAS  Google Scholar 

  33. Thomas-Ahner JM, Wulff BC, Tober KL, Kusewitt DF, Riggenbach JA, Oberyszyn TM (2007) Gender differences in UVB-induced skin carcinogenesis, inflammation, and DNA damage. Cancer Res 67:3468–3474

    Article  CAS  PubMed  Google Scholar 

  34. Tice RR, Andrews PW, Singh NP (1990) The single cell gel assay: a sensitive technique for evaluating intercellular differences in DNA damage and repair. Basic Life Sci 53:291–301

    CAS  PubMed  Google Scholar 

  35. Tzung TY, Rünger TM (1998) Assessment of DNA damage induced by broadband and narrowband UVB in cultured lymphoblasts and keratinocytes using the comet assay. Photochem Photobiol 67:647–650

    Article  CAS  PubMed  Google Scholar 

  36. Vayalil PK, Mittal A, Hara Y, Elmets CA, Katiyar SK (2004) Green tea polyphenols prevent ultraviolet light-induced oxidative damage and matrix metalloproteinases expression in mouse skin. J Invest Dermatol 122:1480–1487

    Article  CAS  PubMed  Google Scholar 

  37. Velasco MV, Sarruf FD, Salgado-Santos IM, Haroutiounian-Filho CA, Kaneko TM, Baby AR (2008) Broad-spectrum bioactive sunscreens. Int J Pharm 363:50–57

    Article  CAS  PubMed  Google Scholar 

  38. Verschooten L, Claerhout S, Van Laethem A, Agostinis P, Garmyn M (2006) New strategies of photoprotection. Photochem Photobiol 82:1016–1023

    Article  CAS  PubMed  Google Scholar 

  39. Yamada Y, Yasui H, Sakurai H (2006) Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochem Photobiol 82:1668–1676

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant of Grant Agency of the Czech Republic (303/07/P314) and Ministry of Education of the Czech Republic (MSM 6198959216). We thank Dr. Ladislav Cvak (IVAX Pharmaceuticals, Opava, Czech Republic) for providing the P. vulgaris extract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Svobodová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vostálová, J., Zdařilová, A. & Svobodová, A. Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res 302, 171–181 (2010). https://doi.org/10.1007/s00403-009-0999-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0999-6

Keywords

Navigation