Skip to main content
Log in

Protection against UVB deleterious skin effects in a mouse model: effect of a topical emulsion containing Cordia verbenacea extract

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Cordia verbenacea DC (Boraginaceae) is a flowering shrub found along the Brazilian Atlantic Forest, Brazilian coast, and low areas of the Amazon. The crude extract of its leaves is widely used in Brazilian folk medicine as an anti-inflammatory, both topically and orally. The aim of this study is to evaluate the activity of C. verbenacea ethanolic leaves extract (CVE) against UVB-triggered cutaneous inflammation and oxidative damage in hairless mice. CVE treatment recovered cutaneous antioxidant capacity demonstrated by scavenging ABTS+ free radical and iron-reducing antioxidant potential evaluated by FRAP. CVE also controlled the following UV-triggered events in the skin: reduced glutathione (GSH) depletion, catalase activity decrease, and superoxide anion (O⋅–) build-up. Furthermore, mice treated with CVE exhibited less inflammation, shown by the reduction in COX-2 expression, TNF-α, IL-1β, IL-6, edema, and neutrophil infiltration. CVE also regulated epidermal thickening and sunburn cells, reduced dermal mast cells, and preserved collagen integrity. The best results were obtained using 5% CVE-added emulsion. The present data demonstrate that topical administration of CVE presents photochemoprotective activity in a mouse model of UVB inflammation and oxidative stress. Because of the intricate network linking inflammation, oxidative stress, and skin cancer, these results also indicate the importance of further studies elucidating a possible role of C. verbenacea in the prevention of UVB-induced skin cancer and evaluating a potential synergy between CVE and sunscreens in topical products against UVB damaging effects to the skin.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, [RC], upon reasonable request.

References

  1. Abranches, S. (2020). Biological megadiversity as a tool of soft power and development for Brazil. Brazilian Political Science Review, 14, 1–18.

    Article  Google Scholar 

  2. Dutra, R. C., Campos, M. M., Santos, A. R. S., & Calixto, J. B. (2016). Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacological Research, 112, 4–29. 

    Article  CAS  PubMed  Google Scholar 

  3. Bayeux, M. C., Fernandes, A. T., Foglio, M. A., & Carvalho, J. E. (2002). Evaluation of the antiedematogenic activity of artemetin isolated from Cordia curassavica DC. Brazilian Journal of Medical and Biological Research, 35, 1229–1232.

    Article  CAS  PubMed  Google Scholar 

  4. Sertié, J. A. A., Woisky, R. G., Wiezel, G., & Rodrigues, M. (2005). Pharmacological assay of Cordia verbenacea V: Oral and topical anti-inflammatory activity, analgesic effect and fetus toxicity of a crude leaf extract. Phytomedicine, 12, 338–344.

    Article  PubMed  Google Scholar 

  5. Gilbert, B., & Favoreto, R. (2013). Cordia verbenacea DC Boraginaceae. Revista Fitos, 7, 17–25.

    Article  Google Scholar 

  6. Matias, E. F. F., Alves, E. F., Santos, B. S., De Souza, C. E. S., Ferreira, J. V. D. A., De Lavor, A. K. L., Figueredo, F. G., Ferreira De Lima, L., Vieira Dos Santos, F. A., Neves Peixoto, F. S., Viana Colares, A., Augusti Boligon, A., Saraiva, R. D. A., Athayde, M. L., Da Rocha, J. B. T., Alencar Menezes, I. R., Douglas Melo Coutinho, H., & Da Costa, J. G. M. (2013). Biological activities and chemical characterization of Cordia verbenacea DC. as tool to validate the ethnobiological usage. Evidence-Based Complementary and Alternative Medicine, 2013, 1–8.

    Article  Google Scholar 

  7. Kabashima, K., Nagamachi, M., Honda, T., Nishigori, C., Miyachi, Y., Tokura, Y., & Narumiya, S. (2007). Prostaglandin E2 is required for ultraviolet B-induced skin inflammation via EP2 and EP4 receptors. Laboratory Investigation, 87, 49–55.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S. J., Lee, K. B., Son, Y. H., Shin, J., Lee, J. H., Kim, H. J., Hong, A. Y., Bae, H. W., Kwon, M. A., Lee, W. J., Kim, J. H., Lee, D. H., Jeong, E. M., & Kim, I. G. (2017). Transglutaminase 2 mediates UV-induced skin inflammation by enhancing inflammatory cytokine production. Cell Death and Disease, 8, e3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fuchs, J., Zollner, T. M., Kaufmann, R., & Podda, M. (2001). Redox-modulated pathways in inflammatory skin diseases. Free Radical Biology and Medicine, 30, 337–353.

    Article  CAS  PubMed  Google Scholar 

  10. Georgetti, S. R., Casagrande, R., Moura-de-Carvalho Vicentini, F. T., Verri, W. A., & Fonseca, M. J. V. (2006). Evaluation of the antioxidant activity of soybean extract by different in vitro methods and investigation of this activity after its incorporation in topical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 64, 99–106.

    Article  CAS  PubMed  Google Scholar 

  11. Bowden, G. T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B light signalling. Nature Reviews Cancer, 4, 23–35.

    Article  CAS  PubMed  Google Scholar 

  12. Afaq, F., & Mukhtar, H. (2006). Botanical antioxidants in the prevention of photocarcinogenesis and photoaging. Experimental Dermatology, 15, 678−684.

    Article  CAS  PubMed  Google Scholar 

  13. Dresler, S., Szymczak, G., & Wójcik, M. (2017). Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharmaceutical Biology, 55, 691–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kostyuk, V., Potapovich, A., Albuhaydar, A. R., Mayer, W., Luca, D., & Korkina, L. (2018). Natural substances for prevention of skin photo‐ageing: Screening systems in the development of sunscreen and rejuvenation cosmetics. Rejuvenation Research, 21, 1–34.

    Article  CAS  Google Scholar 

  15. Pérez-Sánchez, A., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2018). Nutraceuticals for skin care: A comprehensive review of human clinical studies. Nutrients, 10, 1–22.

    Article  CAS  Google Scholar 

  16. Brasil. (2010). Farmacopeia Brasileira (5th ed., Vol. I). ANVISA.

    Google Scholar 

  17. Matos, D. O., Tironi, F. L., Martins, D. H. N., Fagg, C. W., Netto Júnior, N. L., Simeoni, L. A., Magalhães, P. O., Silveira, D., & Fonseca-Bazzo, Y. M. (2015). Determinação de ácido rosmarínico em Cordia verbenacea por cromatografia líquida: aplicabilidade em estudo sazonal. Revista Brasileira de Plantas Medicinais, 7, 857–864.

    Article  Google Scholar 

  18. Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Silva, T. C. C., Caviglione, C. V., Bottura, C., Fonseca, M. J. V., Vicentini, F. T. M. C., Vignoli, J. A., Baracat, M. M., Georgetti, S. R., Verri, W. A., & Casagrande, R. (2016). Topical formulation containing naringenin: Efficacy against ultraviolet B irradiation-induced skin inflammation and oxidative stress in mice. PLoS ONE, 11, 1–21.

    Article  Google Scholar 

  19. Shindo, Y., Witt, E., Han, D., Epstein, W., & Packer, L. (1994). Enzymatic and non-enzymatic antioxidants in epidermis and dermis of human skin. The Journal of Investigative Dermatology, 102, 122–124.

    Article  CAS  PubMed  Google Scholar 

  20. Afaq, F., Saleem, M., Krueger, C. G., Reed, J. D., & Mukhtar, H. (2005). Anthocyanin and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice. International Journal of Cancer, 113, 423–433.

    Article  CAS  PubMed  Google Scholar 

  21. Bhatia, N., Demmer, T. A., Sharma, A. K., Elcheva, I., & Spiegelman, V. S. (2011). Role of β-TrCP ubiquitin ligase receptor in UVB mediated responses in skin. Archives of Biochemistry and Biophysics, 508, 178–184.

    Article  CAS  PubMed  Google Scholar 

  22. Ivan, A. L. M., Campanini, M. Z., Martinez, R. M., Ferreira, V. S., Steffen, V. S., Vicentini, F. T. M. C., Vilela, F. M. P., Martins, F. S., Zarpelon, A. C., Cunha, T. M., Fonseca, M. J. V., Baracat, M. M., Georgetti, S. R., Verri, W. A., & Casagrande, R. (2014). Pyrrolidine dithiocarbamate inhibits UVB-induced skin inflammation and oxidative stress in hairless mice and exhibits antioxidant activity in vitro. Journal of Photochemistry and Photobiology, B: Biology, 138, 124–133.

    Article  CAS  Google Scholar 

  23. Bradley, P. P. B., Priebat, D. A., Christensen, R. D., & Rothstein, G. (1982). Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzime marker. The Journal of Investigative Dermatology, 78, 206–209.

    Article  CAS  PubMed  Google Scholar 

  24. Casagrande, R., Georgetti, S. R., Verri, W. A., Dorta, D. J., dos Santos, A. C., & Fonseca, M. J. V. (2006). Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. Journal of Photochemistry and Photobiology, B: Biology, 84, 21–27.

    Article  CAS  Google Scholar 

  25. Saito, P., Melo, C. P. B., Martinez, R. M., Fattori, V., Cezar, T. L. C., Pinto, I. C., Bussmann, A. J. C., Vignoli, J. A., Georgetti, S. R., Baracat, M. M., Verri, W. A., Jr., & Casagrande, R. (2018). The lipid mediator resolvin D1 reduces the skin inflammation and oxidative stress induced by UV irradiation in hairless mice. Frontiers in Pharmacology, 9, 1–15.

    Article  CAS  Google Scholar 

  26. Onoue, S., Kobayashi, T., Takemoto, Y., & Sasaki, I. (2003). Induction of matrix metalloproteinase-9 secretion from human keratinocytes in culture by ultraviolet B irradiation. Journal of Dermatological Science, 33, 105–111.

    Article  CAS  PubMed  Google Scholar 

  27. Katalinic, V., Modun, D., Music, I., & Boban, M. (2005). Gender differences in antioxidant capacity of rat tissues determined by reducing antioxidant power (FRAP) assays. Comparative Biochemistry and Physiology, 140, 47–52.

    CAS  PubMed  Google Scholar 

  28. Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Carla, V., Vignoli, J. A., Baracat, M. M., Georgetti, S. R., Verri, W. A., Jr., & Casagrande, R. (2015). Hesperidin methyl chalcone inhibits oxidative stress and inflammation in a mouse model of ultraviolet B irradiation-induced skin damage. Journal of Photochemistry and Photobiology, B: Biology, 148, 145–153.

    Article  CAS  Google Scholar 

  29. Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Caviglione, C. V., Fattori, V., Bussmann, A. J. C., Bottura, C., Fonseca, M. J. V., Vignoli, J. A., Baracat, M. M., Georgetti, S. R., Verri Jr., W. A., & Casagrande, R. (2017). Trans-chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH-oxidase and cytokine production. Photochemical & Photobiological Sciences, 16, 1011–1202.

  31. Martinez, R. M., Pinho-Ribeiro, F. A., Steffen, V. S., Caviglione, C. V., Vignoli, J. A., Barbosa, D. S., Baracat, M. M., Georgetti, S. R., Verri, W. A., & Casagrande, R. (2015). Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. Journal of Natural Products, 78, 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  32. Deng, Y., Ediriwickrema, A., Yang, F., Lewis, J., Girardi, M., & Saltzman, M. (2015). A sunblock based on bioadhesive nanoparticles. Nature Materials, 14, 1278–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwarz, A., Bhardwaj, R., Aragane, Y., Mahnke, K., Riemann, H., Metze, D., Luger, T. A., & Schwarz, T. (1995). Ultraviolet-B-induced apoptosis of keratinocytes: Evidence for partial involvement of tumor necrosis factor-α in the formation of sunburn cells. The Journal of Investigative Dermatology, 104, 922–927.

    Article  CAS  PubMed  Google Scholar 

  34. Gilchrest, B. A. (2016). A review of skin ageing and its medical therapy. British Journal of Dermatology, 135, 867–875.

    Article  Google Scholar 

  35. Wilgus, T. A., Koki, A. T., Zweifel, B. S., Kusewitt, D. F., Rubal, P. A., & Oberyszyn, T. M. (2003). Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Molecular Carcinogenesis, 38, 49–58.

    Article  CAS  PubMed  Google Scholar 

  36. Afaq, F., Adhami, V. M., & Mukhtar, H. (2005). Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutation Research, 571, 153–173.

    Article  CAS  PubMed  Google Scholar 

  37. Lisi Hruza, L., & Pentland, A. P. (1993). Mechanisms of UV-induced inflammation. Journal of Investigative Dermatology, 100, S35–S41.

    Article  Google Scholar 

  38. Clydesdale, G. J., Dandie, G. W., & Muller, H. K. (2001). Ultraviolet light induced injury: Immunological and inflammatory effects. Immunology and Cell Biology, 79, 547–568.

    Article  CAS  PubMed  Google Scholar 

  39. Natarajan, V. T., Ganju, P., Ramkumar, A., Grover, R., & Gokhale, R. S. (2014). Multifaceted pathways protect human skin from UV radiation. Nature Chemical Biology, 10, 542–551.

    Article  CAS  PubMed  Google Scholar 

  40. Santos, R. P., Nunes, E. P., Nascimento, R. F., & Santiago, G. M. P. (2006). Short report and Cordia curassavica from the Northeast of Brazil. Journal of the Brazilian Chemical Society, 17, 1027–1030.

    Article  CAS  Google Scholar 

  41. Velde, V., Lavie, D., Zelnik, R., Matida, A. K., & Panizza, S. (1982). Cordialin A and B, two new triterpenes from Cordia verbenacea DC. Journal of the Chemical Society, Perkin Transactions, 1, 2697–2700.

    Article  Google Scholar 

  42. De Carvalho, P. M., Rodrigues, R. F. O., Sawaya, A. C. H. F., Marques, M. O. M., & Shimizu, M. T. (2004). Chemical composition and antimicrobial activity of the essential oil of Cordia verbenacea D.C. Journal of Ethnopharmacology, 95, 297–301.

    Article  PubMed  CAS  Google Scholar 

  43. Ticli, F. K., Hage, L. I. S., Cambraia, R. S., Pereira, P. S., Magro, Â. J., Fontes, M. R. M., Stábeli, R. G., Giglio, J. R., França, S. C., Soares, A. M., & Sampaio, S. V. (2005). Rosmarinic acid, a new snake venom phospholipase A2 inhibitor from Cordia verbenacea (Boraginaceae): Antiserum action potentiation and molecular interaction. Toxicon, 46, 318–327.

    Article  CAS  PubMed  Google Scholar 

  44. Michielin, E. M. Z., Salvador, A. A., Riehl, C. A. S., Smânia, A., Smânia, E. F. A., & Ferreira, S. R. S. (2009). Chemical composition and antibacterial activity of Cordia verbenacea extracts obtained by different methods. Bioresource Technology, 100, 6615–6623.

    Article  CAS  PubMed  Google Scholar 

  45. Sertié, J. A. A., Basile, A. C., Panizza, S., Matida, A. K., & Zelnik, R. (1990). Anti-inflammatory activity and sub-acute toxicity of Artemetin. Planta Medica, 56, 36–40

    Article  PubMed  Google Scholar 

  46. Passos, G. F., Fernandes, E. S., da Cunha, F. M., Ferreira, J., Pianowski, L. F., Campos, M. M., & Calixto, J. B. (2007). Anti-inflammatory and anti-allergic properties of the essential oil and active compounds from Cordia verbenacea. Journal of Ethnopharmacology, 110, 323–333.

    Article  CAS  PubMed  Google Scholar 

  47. Sertié, J. A. A., Basile, A. C. C., Panizza, S., Oshiro, T. T., Azzolini, C. P. P., Penna, S. C. C., Panizza, T. T., Azzolini, C. P. P., & Penna, S. C. C. (1991). Pharmacological assay of Cordia verbenacea III: Oral and topical antiinflammatory activity and gastrotoxicity of a crude leaf extract. Journal of Ethnopharmacology, 31, 239–247.

    Article  PubMed  Google Scholar 

  48. Michielin, E. M. Z., De Lemos Wiese, L. P., Ferreira, E. A., Pedrosa, R. C., & Ferreira, S. R. S. (2011). Radical-scavenging activity of extracts from Cordia verbenacea DC obtained by different methods. The Journal of Supercritical Fluids, 56, 89–96.

    Article  CAS  Google Scholar 

  49. Fernandes, E. S., Passos, G. F., Medeiros, R., da Cunha, F. M., Ferreira, J., Campos, M. M., Pianowski, L. F., & Calixto, J. B. (2007). Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. European Journal of Pharmacology, 569, 228–236.

    Article  CAS  PubMed  Google Scholar 

  50. Melo, C. P. B., Saito, P., Vale, D. L., Rodrigues, C. C. A., Pinto, I. C., Martinez, R. M., Bezerra, J. R., Baracat, M. M., Verri, W. A., Fonseca-Bazzo, Y. M., Georgetti, S. R., & Casagrande, R. (2021). Protective effect of oral treatment with Cordia verbenacea extract against UVB irradiation deleterious effects in the skin of hairless mouse. Journal of Photochemistry and Photobiology B: Biology, 216, 112151.

    Article  CAS  Google Scholar 

  51. Nichols, J. A., & Katiyar, S. K. (2011). Polyphenols: Skin photoprotection and inhibition of photocarcinogenesis. Mini-Reviews in Medicinal Chemistry, 11, 1200–1215.

    Google Scholar 

  52. Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., & Kulma, A. (2016). The potential of plant phenolics in prevention and therapy of skin disorders. International Journal of Molecular Sciences, 17, 1–41.

    Article  CAS  Google Scholar 

  53. Matias, E. F. F., Alves, E. F., Silva, M. K. D. N., Carvalho, V. R. D. A., Coutinho, H. D. M., & da Costa, J. G. M. (2015). The genus Cordia: Botanists, ethno, chemical and pharmacological aspects. Brazilian Journal of Pharmacognosy, 25, 542–552.

    Article  CAS  Google Scholar 

  54. Buckman, Y., Gresham, A., Hale, P., Hruza, G., Anast, J., Masferrer, J., & Pentland, A. P. (1998). COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis, 19, 723–729.

    Article  CAS  PubMed  Google Scholar 

  55. Athar, M., An, K. P., Morel, K. D., Kim, A. L., Aszterbaum, M., Longley, J., Epstein, E. H., & Bickers, D. R. (2001). Ultraviolet B (UVB)-induced COX-2 expression in murine skin: An immunohistochemical study. Biochemical and Biophysical Research Communications, 1047, 1042–1047.

    Article  CAS  Google Scholar 

  56. Wilgus, T. A., Ross, M. S., Parrett, M. L., & Oberyszyn, T. M. (2000). Topical application of a selective cyclooxygenase inhibitor suppresses UVB mediated cutaneous inflammation. Prostaglandins and Other Lipid Mediators, 62, 367–384.

    Article  CAS  PubMed  Google Scholar 

  57. Elmets, C. A., Ledet, J., & Athar, M. (2015). Cyclooxygenases: Mediators of UV-induced skin cancer and potential targets for prevention. The Journal of Investigative Dermatology, 134, 2497–2502.

    Article  CAS  Google Scholar 

  58. Medeiros, R., Passos, G. F., Vitor, C. E., Koepp, J., Mazzuco, T. L., Pianowski, L. F., Campos, M. M., & Calixto, J. B. (2007). Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. British Journal of Pharmacology, 151, 618–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parisotto, E. B., Michielin, E. M. Z., Biscaro, F., Ferreira, S. R. S., Filho, D. W., & Pedrosa, R. C. (2012). The antitumor activity of extracts from Cordia verbenacea D.C. obtained by supercritical fluid extraction. The Journal of Supercritical Fluids, 61, 101–107.

    Article  CAS  Google Scholar 

  60. Pupe, A., Moison, R., De Haes, P., Van Henegouwen, G. B., Rhodes, L., Degreef, H., & Garmyn, M. (2002). Eicosapentaenoic acid, a n-3 polyunsaturated fatty acid differentially modulates TNF-α, IL-1α, IL-6 and PGE2 expression in UVB-irradiated human keratinocytes. The Journal of Investigative Dermatology, 118, 692–698.

    Article  CAS  PubMed  Google Scholar 

  61. Tang, S., Liao, P., Hung, S., & Ge, J. (2017). Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-k B signaling pathway in keratinocytes and mice skin. The Journal of Dermatological Science, 86, 1–11.

    Article  CAS  Google Scholar 

  62. Yoshizumi, M., Nakamura, T., Kato, M., Ishioka, T., Kozawa, K., Wakamatsu, K., & Kimura, H. (2008). Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biology International, 32, 1405–1411.

    Article  CAS  PubMed  Google Scholar 

  63. Pillai, S., Oresajo, C., & Hayward, J. (2005). Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. International Journal of Cosmetic Science, 27, 17–34.

    Article  CAS  PubMed  Google Scholar 

  64. Gupta, S. C., Tyagi, A. K., Deshmukh-Taskar, P., Hinojosa, M., Prasad, S., & Aggarwal, B. B. (2014). Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Archives of Biochemistry and Biophysics, 559, 91–99.

    Article  CAS  PubMed  Google Scholar 

  65. Lembo, S., Balato, A., Di Caprio, R., Cirillo, T., Giannini, V., Gasparri, F., & Monfrecola, G. (2014). The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/chemokine gene expression in skin keratinocyte (HaCaT) cells. BioMed Research International. https://doi.org/10.1155/2014/346793

    Article  PubMed  PubMed Central  Google Scholar 

  66. Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Archives of Biochemistry and Biophysics, 640, 47–52.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Y., Chen, J., Ling, M., López, J. A., Chung, D. W., & Fu, X. (2015). Hypochlorous acid generated by neutrophils inactivates ADAMTS13: An oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. Journal of Biological Chemistry, 290, 1422–1431.

    Article  CAS  Google Scholar 

  68. Hart, P., Grimbaldeston, M., & Finlay-Jones, J. (2000). Mast cells in sunlight-induced immunosuppression. Today’s Life Science, 12, 22–24.

    Google Scholar 

  69. Krystel-Whittemore, M., Dileepan, K. N., & Wood, J. G. (2016). Mast cell: A multi-functional master cell. Frontiers in Pharmacology, 6, 1–12.

    Google Scholar 

  70. Harvima, I. T., & Nilsson, G. (2011). Mast cells as regulators of skin inflammation and immunity. Acta Dermato-Venereologica, 91, 2–10.

    Article  CAS  Google Scholar 

  71. Alam, S., Pal, A., Singh, D., & Ansari, K. M. (2018). Topical application of Nexrutine inhibits ultraviolet B-induced cutaneous inflammatory responses in SKH-1 hairless mouse. Photodermatology, Photoimmunology and Photomedicine, 34, 82–90.

    Article  CAS  PubMed  Google Scholar 

  72. Hart, P. H., Grimbaldeston, M. A., Swift, G. J., Jaksic, A., Noonan, F. P., & Finlay-Jones, J. J. (1998). Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. Journal of Experimental Medicine, 187, 2045–2053.

    Article  CAS  Google Scholar 

  73. Costa De Oliveira, D. M., Luchini, A. C., Seito, L. N., Gomes, J. C., Crespo-López, M. E., & Di Stasi, L. C. (2011). Cordia verbenacea and secretion of mast cells in different animal species. Journal of Ethnopharmacology, 135, 463–468.

    Article  Google Scholar 

  74. Park, H. H., Lee, S., Son, H. Y., Bin Park, S., Kim, M. S., Choi, E. J., Singh, T. S. K., Ha, J. H., Lee, M. G., Kim, J. E., Hyun, M. C., Kwon, T. K., Kim, Y. H., & Kim, S. H. (2008). Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Archives of Pharmacal Research., 31, 1303–1311.

    Article  CAS  PubMed  Google Scholar 

  75. Reuter, S., Gupta, S., Chaturvedi, M., & Aggarwal, B. (2011). Oxidative stress, inflamation, and cancer: How are they linked? Free Radical Biology and Medicine, 49, 1603–1616.

    Article  CAS  Google Scholar 

  76. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry and Cell Biology, 39, 44–84.

    Article  CAS  PubMed  Google Scholar 

  77. Guaratini, T., Medeiros, M. H. G., & Colepicolo, P. (2007). Antioxidantes na manutenção do equilíbrio redox cutâneo: Uso e avaliação de sua eficácia. Quimica Nova, 30, 206–213.

    Article  CAS  Google Scholar 

  78. Wei, H., Zhang, X., Wang, Y., & Lebwohl, M. (2002). Inhibition of ultraviolet light-induced oxidative events in the skin and internal organs of hairless mice by isoflavone genistein. Cancer Letters, 185, 21–29.

    Article  CAS  PubMed  Google Scholar 

  79. Fonseca, Y. M., Catini, C. D., Vicentini, F. T. M. C., Nomizo, A., Gerlach, R. F., & Fonseca, M. J. V. (2010). Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion. Journal of Ethnopharmacology, 127, 596–601.

    Article  CAS  PubMed  Google Scholar 

  80. Xu, Y., & Fisher, G. J. (2005). Ultraviolet (UV) light irradiation induced signal transduction in skin photoaging. Journal of Dermatological Science Supplement, 2 SUPPL, 1–8.

    Article  CAS  Google Scholar 

  81. Svobodova, A., Walterova, D., & Vostalova, J. (2006). Ultraviolet light induced alteration to the skin. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 150, 25–38.

    Article  CAS  PubMed  Google Scholar 

  82. Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting free radicals in oxidative stress-related human diseases. Trends in Pharmacological Sciences, 38, 592–607.

    Article  CAS  PubMed  Google Scholar 

  83. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239, 70–76.

    Article  CAS  PubMed  Google Scholar 

  84. Brewer, M. S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221–247.

    Article  CAS  Google Scholar 

  85. Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13, 572–584.

    Article  CAS  Google Scholar 

  86. Cao, H., Cheng, W. X., Li, C., Pan, X. L., Xie, X. G., & Li, T. H. (2005). DFT study on the antioxidant activity of rosmarinic acid. Journal of Molecular Structure: THEOCHEM, 719, 177–183.

    Article  CAS  Google Scholar 

  87. Meloni, M., Nicolay, J. F., & Franc, J. (2003). Dynamic monitoring of glutathione redox status in UV-B irradiated reconstituted epidermis: Effect of antioxidant activity on skin homeostasis. Toxicology in Vitro, 17, 609–613.

    Article  CAS  PubMed  Google Scholar 

  88. Huber, P. C., Almeida, W. P., & De Fátima, Â. (2008). Glutationa e enzimas relacionadas: Papel biológico e importância em processos patológicos. Quimica Nova, 31, 1170–1179.

    Article  CAS  Google Scholar 

  89. Halliwell, B. (2009). The wanderings of a free radical. Free Radical Biology and Medicine, 46, 531–542.

    Article  CAS  PubMed  Google Scholar 

  90. Campanini, M. Z., Pinho-Ribeiro, F. A., Ivan, A. L. M., Ferreira, V. S., Vilela, F. M. P., Vicentini, F. M. C., Martinez, R. M., Zarpelon, A. C., Fonseca, M. J. V., Faria, T. J., Baracat, M. M., Verri, W. A., Georgetti, S. R., & Casagrande, R. (2013). Efficacy of topical formulations containing Pimenta pseudocaryophyllus extract against UVB-induced oxidative stress and inflammation in hairless mice. Journal of Photochemistry and Photobiology, B: Biology, 127, 153–160.

    Article  CAS  Google Scholar 

  91. Mantena, S. K., & Katiyar, S. K. (2006). Grape seed proanthocyanidins inhibit UV-radiation-induced oxidative stress and activation of MAPK and NF-κB signaling in human epidermal keratinocytes. Free Radical Biology and Medicine, 40, 1603–1614.

    Article  CAS  PubMed  Google Scholar 

  92. Martinez, R. M., Pinho-Ribeiro, F. A., Vale, D. L., Steffen, V. S., Vicentini, F. T. M. C., Vignoli, J. A., Baracat, M. M., Georgetti, S. R., Verri, W. A., & Casagrande, R. (2017). Trans-chalcone added in topical formulation inhibits skin inflammation and oxidative stress in a model of ultraviolet B radiation skin damage in hairless mice. The Journal of Photochemistry and Photobiology B: Biology, 171, 139–146. 

    Article  CAS  Google Scholar 

  93. Halliday, G. M. (2005). Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571, 107–120.

    Article  CAS  PubMed  Google Scholar 

  94. Dinkova-Kostova, A. T. (2008). Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms. Planta Medica, 74, 1548–1559.

    Article  CAS  PubMed  Google Scholar 

  95. Boligon, M. L., Machado, A. A., & Athayde, M. M. (2014). Technical evaluation of antioxidant activity. Medicinal Chemistry (Los Angeles), 4, 517–522.

    Google Scholar 

  96. Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54, 287–293.

    Article  Google Scholar 

  97. Witko-Sarsat, V., Rieu, P., Descamps-Latscha, B., Lesavre, P., & Halbwachs-Mecarelli, L. (2000). Neutrophils: Molecules, functions and pathophysiological aspects. Laboratory Investigation, 80, 617–653.

    Article  CAS  PubMed  Google Scholar 

  98. Nishigori, C., Hattori, Y., & Toyokuni, S. (2004). Role of reactive oxygen species in skin carcinogenesis. Antioxidants and Redox Signaling, 6, 561–570.

    Article  CAS  PubMed  Google Scholar 

  99. Harris, R. E., & Beebe, J. (2012). Reduction in cancer risk by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. Journal of Experimental Pharmacology, 4, 491–496.

    Google Scholar 

  100. Kukreja, R. C., Kontos, H. A., Hess, M. L., & Ellis, E. F. (1986). PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circulation Research, 59, 612–620.

    Article  CAS  PubMed  Google Scholar 

  101. Ribeiro, D., Freitas, M., Tomé, S. M., Silva, A. M. S., Laufer, S., Lima, J. L. F. C., & Fernandes, E. (2014). Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation. https://doi.org/10.1007/s10753-014-9995-x

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nile, S. H., Ko, E. Y., Kim, D. H., & Keum, Y. S. (2016). Screening of ferulic acid related compounds as inhibitors of xanthine oxidase and cyclooxygenase-2 with anti-inflammatory activity. Revista Brasileira de Farmacognosia, 26, 50–55.

    Article  CAS  Google Scholar 

  103. Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid. Phytochemistry, 62, 121–125.

    Article  CAS  PubMed  Google Scholar 

  104. Hassan, S. M. A., Hussein, A. J., & Saeed, A. K. (2015). Role of green tea in reducing epidermal thickness upon ultraviolet light-B injury in BALB/c mice. Advances in Biology. https://doi.org/10.1155/2015/890632

    Article  Google Scholar 

  105. Cezar, T. L. C., Martinez, R. M., Rocha, C., Melo, C. P. B., Vale, D. L., Borghi, S. M., Fattori, V., Vignoli, J. A., Camilios-Neto, D., Baracat, M. M., Georgetti, S. R., Verri Jr, W. A., & Casagrande, R. (2019). Treatment with maresin 1, a resolution lipid, protects skin from inflammation and oxidative stress caused by UVB irradiation. Scientific Reports, 9, 1–14.

    Article  CAS  Google Scholar 

  106. Bolfa, P., Vidrighinescu, R., Petruta, A., Dezmirean, D., Stan, L., Vlase, L., Damian, G., Catoi, C., Filip, A., & Clichici, S. (2013). Photoprotective effects of Romanian propolis on skin of mice exposed to UVB irradiation. Food and Chemical Toxicology, 62, 329–342.

    Article  CAS  PubMed  Google Scholar 

  107. Murphy, G., Ar, Y., Hc, W., Kulms, D., The, S. T., Wulf, H. C., & Kulms, D. (2001). The molecular determinants of sunburn cell formation. Experimental Dermatology, 10, 155–160.

    Article  CAS  PubMed  Google Scholar 

  108. Van Laethem, A., & Agostinis, P. (2009). Starting and propagating apoptotic signals in UVB irradiated keratinocytes. Photochemical and Photobiological Sciences, 8, 299–308.

    Article  PubMed  CAS  Google Scholar 

  109. Van Laethem, A., Claerhout, S., Garmyn, M., & Agostinis, P. (2005). The sunburn cell: Regulation of death and survival of the keratinocyte. International Journal of Biochemistry and Cell Biology, 37, 1547–1553.

    Article  PubMed  CAS  Google Scholar 

  110. Fernando, P., Piao, M. J., Kang, K. A., Ryu, Y. S., Ruwan, S., Madduma, K., Chae, S. W., & Hyun, J. W. (2016). Rosmarinic acid attenuates cell damage against UVB radiation-induced oxidative stress via enhancing antioxidant effects in human HaCaT cells. Biomolecules & Therapeutics, 24, 75–84

    Article  CAS  Google Scholar 

  111. Baliga, M. S., & Katiyar, S. K. (2006). Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochemical and Photobiological Sciences, 5, 243–253.

    Article  CAS  PubMed  Google Scholar 

  112. Bode, A. M., & Dong, Z. (2013). Signal transduction and molecular targets of selected flavonoids. Antioxidants Redox Signal, 19, 163–180.

    Article  CAS  Google Scholar 

  113. Ferraz, C. R., Carvalho, T. T., Manchope, M. F., Artero, N. A., Rasquel-Oliveira, F. S., Fattori, V., Casagrande, R., & Verri, W. A. (2020). Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules, 25, 1-35.

    Article  CAS  Google Scholar 

  114. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease, 1863, 585–597.

    Article  CAS  Google Scholar 

  115. John, A., & Tuszynski, G. (2001). The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathology Oncology Research, 7, 14–23.

    Article  CAS  PubMed  Google Scholar 

  116. Rijken, F., & Bruijnzeel-Koomen, C. A. F. M. (2011). Photoaged Skin: The role of neutrophils, preventive measures, and potential pharmacological targets. Clinical Pharmacology and Therapeutics, 89, 120–124.

    Article  CAS  PubMed  Google Scholar 

  117. Jenkins, G. (2002). Molecular mechanisms of skin ageing. Mechanisms of Ageing and Development, 123, 801–810.

    Article  CAS  PubMed  Google Scholar 

  118. José, M. T. D. A. F., Pedrita, A. S., Emanuella, C. V. P., Raimundo, G. D. O. J., Fabrício, S. S., Jackson, R. G. D. S. A., Larissa, A. R., Xirley, P. N., & Edigênia, C. D. C. A. (2016). Flavonoids as photoprotective agents: A systematic review. The Journal of Medicinal Plants Research, 10, 848–864.

    Article  Google Scholar 

  119. Sánchez-campillo, M., Gabaldon, J. A., Castillo, J., Benavente-garcía, O., Del Baño, M. J., Alcaraz, M., Vicente, V., Alvarez, N., & Lozano, J. A. (2009). Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food and Chemical Toxicology, 47, 386–392.

    Article  PubMed  CAS  Google Scholar 

  120. Mansur, J. S., Breder, M. N. R., Mansur, M. C. A., & Azulay, R. D. (1986). Determinação do fator de proteção por espectrofotometria. Anais Brasileiros de Dermatologia, 61, 121–124.

    Google Scholar 

  121. Sertié, J. A. A., Basile, A. C., Panizza, S., Matida, A. K., & Zelnik, R. (1988). Pharmacological assay of Cordia verbenacea; Part 1. Anti-inflammatory activity and toxicity of the crude extract of the leaves. Planta Medica, 54, 7–10.

    Article  PubMed  Google Scholar 

  122. Roldão, E. D. F., Witaicenis, A., Seito, L. N., Hiruma-Lima, C. A., & Di Stasi, L. C. (2008). Evaluation of the antiulcerogenic and analgesic activities of Cordia verbenacea DC. (Boraginaceae). Journal of Ethnopharmacology, 119, 94–98.

    Article  Google Scholar 

  123. Vilela, F. M., Oliveira, F. M., Vicentini, F. T., Casagrande, R., Verri, W. A., Cunha, T. M., & Fonseca, M. J. (2016). Commercial sunscreen formulations: UVB irradiation stability and effect on UVB irradiation-induced skin oxidative stress and inflammation. Journal of Photochemistry and Photobiology B: Biology, 163, 413–420.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the laboratories CMLP-UEL, LPG-UEL, and CEPPOS-UEL for access to core facilities.

Funding

This work was supported by CNPq (Brazil) [Grant number 307186, 2017-2 and 307852, 2019-9]; CAPES (Brazil) [Grant number 001]; PRONEX grant supported by SETI/Fundação Araucária and MCTI/CNPq, and Governo do Estado do Paraná (PR, Brazil) [Grant number 2, protocol 46843, 2016] and PBA Grant supported by SETI/Fundação Araucária (PR, Brazil) [Grant number PBA 014, protocol 47396, 2017].

Author information

Authors and Affiliations

Authors

Contributions

CPBM; PS; DV; CCAR; ICP; and JRB: performing of experiments and data acquisition. CPBM; SG; and RC: organization of the database. CPBM; WAV; SG; and RC: data analysis, data interpretation, and writing of the original draft. RMM; YMF-B; SG; MMB; and RC: methodology development and validation. WAV; SG; YMF-B; and RC: study conceptualization and design. SG and RC: project management. WAV; SG; YMF-B; MMB; and RC: funding acquisition. All authors contributed to the manuscript’s revision, read, and approved the final version of the manuscript.

Corresponding author

Correspondence to Rubia Casagrande.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethics approval

The institution commission on animal welfare, named “Animal Ethics Committee of the Londrina State University” (CEUA-UEL), approved this project under document no 030/201/ process no 1818.2015.2400.

Consent of publication

All authors agree with the publication of this manuscript.

Glossary

ABTS+

2,2 -Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)

CAT

Catalase

COX

Cicloxigenase

CVE

Cordia verbenacea ethanolic leaves extract

DTNB

5,5′-Dithiobis (2-nitrobenzoic acid)

ELISA

Enzyme-Linked Immunosorbent Assay

FRAP

Ferric Reducing Antioxidant Power

GSH

Reduced glutathione

HaCaT

Aneuploid immortal keratinocyte cell

HTAB

Hexadecyltrimethylammonium bromide

IL

Interleukin

LT

Leukotriene

MCF-7

Breast cancer cell line

MMP

Matrix metalloproteinase

MPO

Myeloperoxidase

NBT

Nitroblue tetrazolium

NMSC

Non-melanoma skin cancer

·OH

Hydroxyl free radical

O2 ·−

Superoxide anion

qPCR

Quantitative polymerase chain reaction

ROS

Reactive oxygen species

SDS-PAGE

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEM

Standard error mean

TPTZ

2,4,6-Tris(2-pyridyl)-s-triazine

TNF-α

Tumor necrosis factor-a

UV

Ultraviolet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, C.P.B., Saito, P., Vale, D.L. et al. Protection against UVB deleterious skin effects in a mouse model: effect of a topical emulsion containing Cordia verbenacea extract. Photochem Photobiol Sci 20, 1033–1051 (2021). https://doi.org/10.1007/s43630-021-00079-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00079-x

Keywords

Navigation