Skip to main content

Advertisement

Log in

Localization and quantification of intact, undamaged right-handed double-stranded B-DNA, and denatured single-stranded DNA in normal human epidermis and its effects on apoptosis and terminal differentiation (denucleation)

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Quantification of two types of nucleic acids [double-stranded (ds-) and single-stranded (ss-) DNA] was performed to understand the distribution of DNA within the epidermal strata and to examine the effects of DNA structure on gene expression, viz., apoptosis and terminal differentiation. In addition, we examined the precise starting point of cell death within the epidermis (suprabasal layer); examined how DNA structure affects gene expression of melanocytes; and characterized the “transitional cells” located between the stratum granulosum and stratum corneum, viz., epidermal phase transition zone (EPTZ). Ultrasensitive anti-DNA antibody probes (ds-DNA, ss-DNA), the Feulgen reaction, histological stains (morphological characterization) and the terminal deoxyribonucleotidyl transferase (TUNEL) assay (apoptosis) were used to characterize cell death in normal human epidermis. This study characterized, for the first time, the deterioration of right-handed ds-B-DNA and the increase in denatured ss-DNA during epidermal maturation. For the first time, this approach also allowed for the quantitative and qualitative characterization of DNA content and structure in all epidermal strata, using anti-ds-B-DNA and anti-ss-DNA antibodies. In order to improve the retention and quality of DNA, a novel histotechnological processing procedure was used. The results indicate that the largest decline in DNA occurred within the stratum granulosum, followed by the EPTZ, and the stratum spinosum. Not all epidermal nuclei lost DNA, indicating two differentiating keratinocyte pathways, viz., apoptotic and non-apoptotic. Both pathways united in the stratum granulosum. These results suggest that keratinocyte terminal differentiation and apoptosis are distinct cellular events, cell death begins earlier than expected, and molecular epidermal events take place in a gradual and orderly manner within keratinocytes. During maturation, ds-B-DNA decreases as ss-DNA increases. Therefore, during differentiation of keratinocytes, both DNA content and DNA structure are altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alavaikko M (1971) Selective separation of mouse epidermal cells and cytophotometric estimation of their nuclear DNA. Acta Pathol Microbiol Scand Suppl 226:1–76

    PubMed  CAS  Google Scholar 

  2. Baden HP (1967) Thymine and uracil metabolism in the epidermis. J Invest Dermatol 48:235–239

    PubMed  CAS  Google Scholar 

  3. Baima B, Sticherling M (2002) How specific is the TUNEL reaction? An account of a histochemical study on human skin. Am J Dermatopathol 24:130134. doi:10.1097/00000372-200204000-00004

    Article  Google Scholar 

  4. Bern HA, Alfert M, Blair SM (1957) Cytochemical studies of keratin formation and of epithelial metaplasia in the rodent vagina and prostate. J Histochem Cytochem 5:105–119

    PubMed  CAS  Google Scholar 

  5. Broekaert D, Van Oostveldt P, Coucke P, De Bersaques J, Gillis E, Reyniers P (1986) Nuclear differentiation and ultimate fate during epidermal keratinization: two wavelength and cytofluorometric DNA investigations completed by computerized scanning image analysis. Arch Dermatol Res 279:100–111. doi:10.1007/BF00417530

    Article  PubMed  CAS  Google Scholar 

  6. Bhoumik A, Fichtman B, Derossi C, Breitwieser W, Kluger HM, Davis S, Subtil A, Meltzer P, Krajewski S, Jones N, Ronai Z (2008) Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci USA 105:1674–1679. doi:10.1073/pnas.0706057105

    Article  PubMed  CAS  Google Scholar 

  7. Carson FL (ed) (1990) Immunohistochemistry. In: Histotechnology: a self-instructional text. ASCP Press, Chicago, pp 231–248

  8. Cohen JJ, Duke RC (1992) Apoptosis and programmed cell death in immunity. Annu Rev Immunol 10:267–293. doi:10.1146/annurev.iy.10.040192.001411

    Article  PubMed  CAS  Google Scholar 

  9. Cross SS, Start RD, Smith JH (1990) Does delay in fixation affect the number of mitotic figures in processed tissue? J Clin Pathol 43:597–599. doi:10.1136/jcp.43.7.597

    Article  PubMed  CAS  Google Scholar 

  10. Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (1997) Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am J Pathol 151:1205–1213

    PubMed  CAS  Google Scholar 

  11. Eckert RL, Crish JF, Robinson NA (1997) The epidermal keratinocyte as a model for the study of gene regulation and cell differentiation. Physiol Rev 77:397–424

    PubMed  CAS  Google Scholar 

  12. Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698. doi:10.1146/annurev.cb.07.110191.003311

    Article  PubMed  CAS  Google Scholar 

  13. Erb P, Ji J, Kump E, Mielgo A, Wernli M (2008) Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer. Adv Exp Med Biol 624:283–295. doi:10.1007/978-0-387-77574-6_22

    Article  PubMed  Google Scholar 

  14. Fuchs E, Byrne C (1994) The epidermis: rising to the surface. Curr Opin Genet Dev 4:725–736. doi:10.1016/0959-437X(94)90140-X

    Article  PubMed  CAS  Google Scholar 

  15. Fukuyama K, Epstein WL (1975) A comparative autoradiographic study of keratogyalin granules containing cystine and histidine. J Ultrastruct Res 51:314–325. doi:10.1016/S0022-5320(75)80096-7

    Article  PubMed  CAS  Google Scholar 

  16. Fukuyama K, Inoue N, Suzuki H, Epstein WL (1976) Keratinization. Int J Dermatol 15:473–489. doi:10.1111/j.1365-4362.1976.tb00713.x

    Article  PubMed  CAS  Google Scholar 

  17. Gagna CE, Lambert WC, Kuo HR, Farnsworth PN (1997) Localization of B-DNA and Z-DNA in terminally differentiating fiber cells in the adult lens. J Histochem Cytochem 45:1511–1521

    PubMed  CAS  Google Scholar 

  18. Gagna CE, Kuo HR, Lambert WC (1999) Terminal differentiation and left-handed Z-DNA: a review. Cell Biol Int 23:1–5. doi:10.1006/cbir.1998.0327

    Article  PubMed  CAS  Google Scholar 

  19. Gagna CE, Kuo HR, Florea E, Shami W, Taormina R, Vaswani N, Gupta M, Vijh R, Lambert WC (2001) Comparison of apoptosis and terminal differentiation: the mammalian aging process. J Histochem Cytochem 49:929–930

    PubMed  CAS  Google Scholar 

  20. Gagna CE, Lambert WC (2006) Novel drug discovery and molecular biological methods, via DNA, RNA and protein changes using structure-function transitions: transitional structural chemogenomics, transitional structural chemoproteomics and novel multi-stranded nucleic acid microarray. Med Hypotheses 67:1099–1114. doi:10.1016/j.mehy.2006.05.020

    Article  PubMed  CAS  Google Scholar 

  21. Gagna CE, Kuo HR, Chan NJ, Mitacek EJ, Spivak A, Pasquariello TD, Balgobin C, Mukhi R, Lambert WC (2007) Novel DNA staining method and processing technique for the quantification of undamaged double-stranded DNA in epidermal tissue sections by PicoGreen probe staining and microspectrophotometry. J Histochem Cytochem 55:999–1014. doi:10.1369/jhc.7A7194.2007

    Article  PubMed  CAS  Google Scholar 

  22. Gagna CE, Lambert WC (2009) Novel multistranded, alternative, plasmid and helical transitional DNA, and RNA microarrays: implications for therapeutics. Pharmacogenomics 10:895–914

    Article  PubMed  CAS  Google Scholar 

  23. Gandarillas A, Goldsmith LA, Gschmeissner S, Leigh IM, Watt FM (1999) Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes. Exp Dermatol 8:71–79. doi:10.1111/j.1600-0625.1999.tb00350.x

    Article  PubMed  CAS  Google Scholar 

  24. Gilhar A, Ullmann Y, Karry R, Shalaginov R, Assy B, Serafimovich S, Kalish RS (2004) Aging of human epidermis: reversal of aging changes correlates with reversal of keratinocyte Fas expression and apoptosis. J Gerontol A Biol Sci Med Sci 59:411–415

    PubMed  Google Scholar 

  25. Goldman AS, Baker MK, Piddington R, Herold R (1983) Inhibition of programmed cell death in mouse embryonic plate in vitro by cortisol and phenytoin: receptor involvement and requirement of protein synthesis. Proc Soc Exp Biol Med 174:239–243

    PubMed  CAS  Google Scholar 

  26. Hashimoto K, Ogawa K (1963) Histochemical studies on the skin I. The activity of phosphatases during the histogenesis of the skin in the rat. Am J Anat 118:35–50. doi:10.1002/aja.1001130105

    Article  Google Scholar 

  27. Hewitson TD, Bisucci T, Darby IA (2006) Histochemical localization of apoptosis with in situ labeling of fragmented DNA. In: Darby A, Hewitson TD (eds) Methods in molecular biology. In situ hybridization protocols, vol 326. Humana Press, Totowa, pp 227–234

    Chapter  Google Scholar 

  28. Ishida-Yamamoto A, Tanaka H, Takahashi H, Hashimoto Y, Iizuka H (1999) Programmed cell death in normal epidermis and loricrin keratoderma. Multiple functions of profilaggrin in keratinization. J Investig Dermatol Symp Proc 4:145–149. doi:10.1038/sj.jidsp.5640198

    Article  PubMed  CAS  Google Scholar 

  29. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  30. Kerr JF, Searle J (1973) Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Arch B Cell Pathol Incl Mol Pathol 13:87–102

    CAS  Google Scholar 

  31. Kok LP, Boon ME (eds) (1992) Microwave cookbook for microscopists: art and science of visualization. Coulomb Press Leyden, Leiden

    Google Scholar 

  32. Kokileva L (1994) Multi-step chromatin degradation in apoptosis: DNA breakdown in apoptosis. Int Arch Allergy Immunol 105:339–343

    Article  PubMed  CAS  Google Scholar 

  33. Kurose K, Sakihama H, Mori O, Sassi Y (1996) Microfluorometric study of nuclear DNA in normal human epidermis. Acta Histochem 98:39–46

    PubMed  CAS  Google Scholar 

  34. McCall CA, Cohen JJ (1991) Programmed cell death in terminally differentiating keratinocytes: role of endogenous endonuclease. J Invest Dermatol 97:111–114. doi:10.1111/1523-1747.ep12478519

    Article  PubMed  CAS  Google Scholar 

  35. Miyagawa T, Anai M, Urabe H (1975) Degradation of deoxyribonucleic acid by guinea-pig epidermis extracts. Arch Dermatol Res 254:79–85. doi:10.1007/BF00561538

    Article  PubMed  CAS  Google Scholar 

  36. Miyagawa T, Anai M, Urabe H (1977) Purification and characterization of guinea-pig epidermal acid phosphatase. Br J Dermatol 96:263–269. doi:10.1111/j.1365-2133.1977.tb06135.x

    Article  PubMed  CAS  Google Scholar 

  37. Ogura R, Ueda T, Kumano S, Sakata T, Zöllner EJ, Zahn RK (1983) Microdisc-electrophoretic study of deoxyribonucleases in cow snout epidermis. Arch Dermatol Res 275:213–217

    PubMed  CAS  Google Scholar 

  38. Peitsch MC, Müller C, Tschopp J (1993) DNA fragmentation during apoptosis is caused by frequent single-strand cuts. Nucleic Acids Res 21:4206–4209. doi:10.1093/nar/21.18.4206

    Article  PubMed  CAS  Google Scholar 

  39. Pelc SR (1959) The participation of the cell nucleus and its DNA in the formation of keratin. Exp Cell Res 6:97–104

    PubMed  CAS  Google Scholar 

  40. Pelc SR (1959) Metabolic activity of DNA as shown by autoradiographs. Lab Invest 8:225–236

    PubMed  CAS  Google Scholar 

  41. Polakowska RR, Haake AR (1994) Apoptosis: the skin from a new perspective. Cell Death Differ 1:19–31

    PubMed  CAS  Google Scholar 

  42. Sasai Y, Kawamura K, Namba K (1979) The separation of basal and differentiating cells from human epidermis for DNA cytofluorometry. Histochemistry 63:265–272. doi:10.1007/BF00490055

    Article  PubMed  CAS  Google Scholar 

  43. Sasai Y, Kawamura K, Namba K, Naito M (1983) Cytofluorometric study of nuclear DNA in experimentally induced epidermal hyperplasia. Acta Histochem 73:135–142

    PubMed  CAS  Google Scholar 

  44. Sasai Y, Hachisuka H, Mori O, Nomura H (1984) Separation of keratinocytes by density gradient centrifugation for DNA cytofluorometry. Histochemistry 80:133–136. doi:10.1007/BF00679986

    Article  PubMed  CAS  Google Scholar 

  45. Shi S-R, Gu J, Taylor CR (eds) (2000) Antigen retrieval techniques. In: Immunohistochemistry and molecular morphology. BioTechniques Press, Westborough, pp 1–360

  46. Srinivasan M, Sedmak D, Jewell S (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161:1961–1971

    PubMed  CAS  Google Scholar 

  47. Steigleder GK, Raab WP (1962) The localization of ribonuclease and deoxyribonuclease activities in normal and psoriatic epidermis. J Invest Dermatol 38:209–214

    PubMed  CAS  Google Scholar 

  48. Steinert PM (1995) A model for the hierarchical structure of the human epidermal cornified cell envelope. Cell Death Differ 2:33–40

    PubMed  CAS  Google Scholar 

  49. Su C, Gao G, Schneider S, Helt C, Weiss C, O’Reilly MO, Bohmann D, Zhao J (2004) DNA damage induces downregulation of histone gene expression through the G1 checkpoint pathway. EMBO J 23:1133–1143. doi:10.1038/sj.emboj.7600120

    Article  PubMed  CAS  Google Scholar 

  50. Tacha D, Teixeira M (2002) History and overview of antigen retrieval: methodologies and critical aspects. J Histotechnol 25:237–242

    CAS  Google Scholar 

  51. Teh M-T, Blaydon D, Ghali LR, Edmunds S, Pantazi E, Barnes MR, Leigh IM, Kelsell DP, Philpott MP (2007) Role for WNT16B in human epidermal keratinocyte proliferation and differentiation. J Cell Sci 120:330–339. doi:10.1242/jcs.03329

    Article  PubMed  CAS  Google Scholar 

  52. Teraki Y, Shiohara T (1999) Apoptosis and the skin. Eur J Dermatol 9:413–425

    PubMed  CAS  Google Scholar 

  53. Timares L, Katiyar SK, Elmets CA (2008) DNA damage, apoptosis and Langerhans cells—activators of UV-induced immune tolerance. Photochem Photobiol 84:422–436. doi:10.1111/j.1751-1097.2007.00284.x

    Article  PubMed  CAS  Google Scholar 

  54. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous nuclease activity. Nature 284:555–556. doi:10.1038/284555a0

    Article  PubMed  CAS  Google Scholar 

  55. Wyllie AH (1985) The biology of cell death in tumors. Anticancer Res 5:131–136

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. B.D. Stollar for supplying us with the 2C10 MAb. We would like to dedicate this project to Mrs. Judy Kehoe Gagna. This project was supported in part by an NYIT-AAUP Research Grant (2004–2005), New Jersey Medical School, Summer Research Grant (2008), and two NYIT Institutional Support for Research and Creativity Grants (2007–2008 and 2008–2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude E. Gagna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagna, C.E., Chan, N.J., Farnsworth, P.N. et al. Localization and quantification of intact, undamaged right-handed double-stranded B-DNA, and denatured single-stranded DNA in normal human epidermis and its effects on apoptosis and terminal differentiation (denucleation). Arch Dermatol Res 301, 659–672 (2009). https://doi.org/10.1007/s00403-009-0965-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0965-3

Keywords

Navigation