Skip to main content

Quantification of Cyclobutane Pyrimidine Dimers in Human Epidermal Stem Cells

  • Protocol
  • First Online:
Skin Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 989))

  • 2922 Accesses

Abstract

The common procedures that are used to quantify cyclobutane pyrimidine dimers (CPD) comprise the extraction of cellular DNA followed by the detection of this nucleic acid modification by immunoblotting or electrophoretic methods. Consequently, these approaches provide an averaged damage intensity value of a whole population of cells and are not applicable to studies where a small subgroup such as somatic stem cells are intended to be investigated and the individual cellular damage is of interest. Here, we describe a strategy to isolate epidermal stem cells from minimum human epidermis samples and a subsequent immunocytochemical quantification of cellular CPDs. Besides the determination of the DNA damage status, this technique allows for the examination of cellular CPD intensity distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cadet J, Douki T, Pouget JP et al (2001) Effects of UV and visible radiations on cellular DNA. Curr Probl Dermatol 29:62–73

    Article  PubMed  CAS  Google Scholar 

  2. Molho-Pessach V, Lotem M (2007) Ultraviolet radiation and cutaneous carcinogenesis. Curr Probl Dermatol 35:14–27

    Article  PubMed  CAS  Google Scholar 

  3. Frosina G (2010) The bright and the dark sides of DNA repair in stem cells. J Biomed Biotechnol: 845396

    Google Scholar 

  4. Maynard S, Swistowska AM, Lee JW et al (2008) Human embryonic stem cells have enhanced repair of multiple forms of DNA damage. Stem Cells 26:2266–2274

    Article  PubMed  Google Scholar 

  5. Bracker TU, Giebel B, Spanholtz J et al (2006) Stringent regulation of DNA repair during human hematopoietic differentiation: a gene expression and functional analysis. Stem Cells 24:722–730

    Article  PubMed  CAS  Google Scholar 

  6. Chen MF, Lin CT, Chen WC et al (2006) The sensitivity of human mesenchymal stem cells to ionizing radiation. Int J Radiat Oncol Biol Phys 66:244–253

    Article  PubMed  CAS  Google Scholar 

  7. Rachidi W, Harfourche G, Lemaitre G et al (2007) Sensing radiosensitivity of human ­epidermal stem cells. Radiother Oncol 83:267–276

    Article  PubMed  CAS  Google Scholar 

  8. Saretzki G, Armstrong L, Leake A et al (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22:962–971

    Article  PubMed  CAS  Google Scholar 

  9. Sun X, Fu X, Sheng Z (2007) Cutaneous stem cells: something new and something borrowed. Wound Repair Regen 15:775–785

    Article  PubMed  Google Scholar 

  10. Kaur P (2006) Interfollicular epidermal stem cells: identification, challenges, potential. J Invest Dermatol 126:1450–1458

    Article  PubMed  CAS  Google Scholar 

  11. Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    Article  PubMed  CAS  Google Scholar 

  12. Li J, Miao C, Guo W et al (2008) Enrichment of putative human epidermal stem cells based on cell size and collagen type IV adhesiveness. Cell Res 18:360–371

    Article  PubMed  CAS  Google Scholar 

  13. Jones PH, Harper S, Watt FM (1995) Stem cell patterning and fate in human epidermis. Cell 80:83–93

    Article  PubMed  CAS  Google Scholar 

  14. Ohyama M, Terunuma A, Tock CL et al (2006) Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest 116:249–260

    Article  PubMed  CAS  Google Scholar 

  15. Nijhof JG, Braun KM, Giangreco A et al (2006) The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133:3027–3037

    Article  PubMed  CAS  Google Scholar 

  16. Wan H, Stone MG, Simpson C et al (2003) Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J Cell Sci 116:4239–4248

    Article  PubMed  CAS  Google Scholar 

  17. Webb A, Li A, Kaur P (2004) Location and phenotype of human adult keratinocyte stem cells of the skin. Differentiation 72:387–395

    Article  PubMed  Google Scholar 

  18. Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A 95:3902–3907

    Article  PubMed  CAS  Google Scholar 

  19. Moriwaki S, Takahashi Y (2008) Photoaging and DNA repair. J Dermatol Sci 50:169–176

    Article  PubMed  CAS  Google Scholar 

  20. Nijhof JG, van Pelt C, Mulder AA et al (2007) Epidermal stem and progenitor cells in murine epidermis accumulate UV damage despite NER proficiency. Carcinogenesis 28:792–800

    Article  PubMed  CAS  Google Scholar 

  21. Ruetze M, Dunckelmann K, Schade A et al (2011) Damage at the root of cell renewal–UV sensitivity of human epidermal stem cells. J Dermatol Sci. doi:10.1016/j.jdermsci.2011.06.010

  22. Kiistala U (1968) Suction blister device for separation of viable epidermis from dermis. J Invest Dermatol 50:129–137

    PubMed  CAS  Google Scholar 

  23. Gupta S, Shroff S (1999) Modified technique of suction blistering for epidermal grafting in vitiligo. Int J Dermatol 38:306–309

    Article  PubMed  CAS  Google Scholar 

  24. Kim HU, Yun SK (2000) Suction device for epidermal grafting in vitiligo: employing a syringe and a manometer to provide an ­adequate negative pressure. Dermatol Surg 26:702–704

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruetze, M., Gallinat, S., Wenck, H., Knott, A. (2013). Quantification of Cyclobutane Pyrimidine Dimers in Human Epidermal Stem Cells. In: Turksen, K. (eds) Skin Stem Cells. Methods in Molecular Biology, vol 989. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-330-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-330-5_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-329-9

  • Online ISBN: 978-1-62703-330-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics