Skip to main content
Log in

Experimental transmissibility of mutant SOD1 motor neuron disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

By unknown mechanisms, the symptoms of amyotrophic lateral sclerosis (ALS) seem to spread along neuroanatomical pathways to engulf the motor nervous system. The rate at which symptoms spread is one of the primary drivers of disease progression. One mechanism by which ALS symptoms could spread is by a prion-like propagation of a toxic misfolded protein from cell to cell along neuroanatomic pathways. Proteins that can transmit toxic conformations between cells often can also experimentally transmit disease between individual organisms. To survey the ease with which motor neuron disease (MND) can be transmitted, we injected spinal cord homogenates prepared from paralyzed mice expressing mutant superoxide dismutase 1 (SOD1-G93A and G37R) into the spinal cords of genetically vulnerable SOD1 transgenic mice. From the various models we tested, one emerged as showing high vulnerability. Tissue homogenates from paralyzed G93A mice induced MND in 6 of 10 mice expressing low levels of G85R-SOD1 fused to yellow fluorescent protein (G85R–YFP mice) by 3–11 months, and produced widespread spinal inclusion pathology. Importantly, second passage of homogenates from G93A → G85R–YFP mice back into newborn G85R–YFP mice induced disease in 4 of 4 mice by 3 months of age. Homogenates from paralyzed mice expressing the G37R variant were among those that transmitted poorly regardless of the strain of recipient transgenic animal injected, a finding suggestive of strain-like properties that manifest as differing abilities to transmit MND. Together, our data provide a working model for MND transmission to study the pathogenesis of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8:552–561. doi:10.1038/nrm2204

    Article  CAS  PubMed  Google Scholar 

  2. Ayers J, Kincaid AE, Bartz JC (2009) Prion strain targeting independent of strain-specific neuronal tropism. J Virol 83:81–87. doi:10.1128/JVI.01745-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ayers J, Xu G, Pletnikova O, Troncoso JC, Hart PJ, Borchelt DR (2014) Conformational specificity of the C4F6 SOD1 antibody; low frequency of reactivity in sporadic ALS cases. Acta Neuropathol Commun 2:55. doi:10.1186/2051-5960-2-55

    Article  PubMed Central  PubMed  Google Scholar 

  4. Banci L, Bertini I, Durazo A, Girotto S, Gralla EB, Martinelli M, Valentine JS, Vieru M, Whitelegge JP (2007) Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS. Proc Natl Acad Sci USA 104:11263–11267. doi:10.1073/pnas.0704307104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bandyopadhyay U, Nagy M, Fenton WA, Horwich AL (2014) Absence of lipofuscin in motor neurons of SOD1-linked ALS mice. Proc Natl Acad Sci USA. doi:10.1073/pnas.1409314111

  6. Bartz JC, Kincaid AE, Bessen RA (2002) Retrograde transport of transmissible mink encephalopathy within descending motor tracts. J Virol 76:5759–5768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bessen RA, Marsh RF (1992) Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J Gen Virol 73(Pt 2):329–334

    Article  PubMed  Google Scholar 

  8. Borchelt DR, Guarnieri M, Wong PC, Lee MK, Slunt HS, Xu ZS, Sisodia SS, Price DL, Cleveland DW (1995) Superoxide dismutase 1 subunits with mutations linked to familial amyotrophic lateral sclerosis do not affect wild-type subunit function. J Biol Chem 270:3234–3238

    Article  CAS  PubMed  Google Scholar 

  9. Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91:8292–8296

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Brooks BR (1991) The role of axonal transport in neurodegenerative disease spread: a meta-analysis of experimental and clinical poliomyelitis compares with amyotrophic lateral sclerosis. Can J Neurol Sci 18:435–438

    CAS  PubMed  Google Scholar 

  11. Bruce M, Chree A, McConnell I, Foster J, Pearson G, Fraser H (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and the species barrier. Philos Trans R Soc Lond B Biol Sci 343:405–411. doi:10.1098/rstb.1994.0036

    Article  CAS  PubMed  Google Scholar 

  12. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–1854

    Article  CAS  PubMed  Google Scholar 

  13. Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP, Valentine JS (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci USA 105:18663–18668. doi:10.1073/pnas.0807058105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chia R, Tattum MH, Jones S, Collinge J, Fisher EMC, Jackson GS (2010) Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis. PLoS One 5:e10627. doi:10.1371/journal.pone.0010627

    Article  PubMed Central  PubMed  Google Scholar 

  15. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913. doi:10.1038/ncb1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Dickinson AG, Meikle VM (1971) Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent. Mol Gen Genet 112:73–79

    Article  CAS  PubMed  Google Scholar 

  17. Fraser JR (1996) Infectivity in extraneural tissues following intraocular scrapie infection. J Gen Virol 77(Pt 10):2663–2668

    Article  CAS  PubMed  Google Scholar 

  18. Grad LI, Yerbury JJ, Turner BJ, Guest WC, Pokrishevsky E, O’Neill MA, Yanai A, Silverman JM, Zeineddine R, Corcoran L, Kumita JR, Luheshi LM, Yousefi M, Coleman BM, Hill AF, Plotkin SS, Mackenzie IR, Cashman NR (2014) Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc Natl Acad Sci USA 111:3620–3625. doi:10.1073/pnas.1312245111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Graffmo KS, Forsberg K, Bergh J, Birve A, Zetterstrom P, Andersen PM, Marklund SL, Brannstrom T (2012) Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Hum Mol Genet 22:51–60. doi:10.1093/hmg/dds399

    Article  PubMed  Google Scholar 

  20. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  21. Hsiao KK, Groth D, Scott M, Yang SL, Serban H, Rapp D, Foster D, Torchia M, Dearmond SJ, Prusiner SB (1994) Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci USA 91:9126–9130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jaarsma D, Rognoni F, van Duijn W, Verspaget HW, Haasdijk ED, Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102:293–305. doi:10.1007/s004010100399

    CAS  PubMed  Google Scholar 

  23. Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 97:12571–12576. doi:10.1073/pnas.220417997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Jonsson PA, Graffmo KS, Andersen PM, Brännström T, Lindberg M, Oliveberg M, Marklund SL (2006) Disulphide-reduced superoxide dismutase-1 in CNS of transgenic amyotrophic lateral sclerosis models. Brain 129:451–464. doi:10.1093/brain/awh704

    Article  PubMed  Google Scholar 

  25. Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosurg Psychiatry 83:739–745. doi:10.1136/jnnp-2011-301826

    Article  PubMed Central  PubMed  Google Scholar 

  26. Karch CM, Prudencio M, Winkler DD, Hart PJ, Borchelt DR (2009) Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci USA 106:7774–7779. doi:10.1073/pnas.0902505106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. McBride PA, Schulz-Schaeffer WJ, Donaldson M, Bruce M, Diringer H, Kretzschmar HA, Beekes M (2001) Early spread of scrapie from the gastrointestinal tract to the central nervous system involves autonomic fibers of the splanchnic and vagus nerves. J Virol 75:9320–9327. doi:10.1128/JVI.75.19.9320-9327.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. McKinley MP, Dearmond SJ, Torchia M, Mobley WC, Prusiner SB (1989) Acceleration of scrapie in neonatal Syrian hamsters. Neurology 39:1319–1324

    Article  CAS  PubMed  Google Scholar 

  29. Meyer-Luehmann M (2006) Exogenous induction of cerebral-amyloidogenesis is governed by agent and host. Science 313:1781–1784. doi:10.1126/science.1131864

    Article  CAS  PubMed  Google Scholar 

  30. Monari L, Chen SG, Brown P, Parchi P, Petersen RB, Mikol J, Gray F, Cortelli P, Montagna P, Ghetti B (1994) Fatal familial insomnia and familial Creutzfeldt–Jakob disease: different prion proteins determined by a DNA polymorphism. Proc Natl Acad Sci USA 91:2839–2842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mougenot A-L, Nicot S, Bencsik A, Morignat E, Verchere J, Lakhdar L, Legastelois S, Baron T (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33:2225–2228. doi:10.1016/j.neurobiolaging.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  32. Münch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553. doi:10.1073/pnas.1017275108

    Article  PubMed Central  PubMed  Google Scholar 

  33. Oztug Durer ZA, Cohlberg JA, Dinh P, Padua S, Ehrenclou K, Downes S, Tan JK, Nakano Y, Bowman CJ, Hoskins JL, Kwon C, Mason AZ, Rodriguez JA, Doucette PA, Shaw BF, Valentine JS (2009) Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase. PLoS One 4:e5004. doi:10.1371/journal.pone.0005004

    Article  PubMed Central  PubMed  Google Scholar 

  34. Peretz D, Scott MR, Groth D, Williamson RA, Burton DR, Cohen FE, Prusiner SB (2001) Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci 10:854–863. doi:10.1110/ps.39201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Prudencio M, Borchelt DR (2011) Superoxide dismutase 1 encoding mutations linked to ALS adopts a spectrum of misfolded states. Mol Neurodegener 6:77. doi:10.1186/1750-1326-6-77

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Prudencio M, Durazo A, Whitelegge JP, Borchelt DR (2010) An examination of wild-type SOD1 in modulating the toxicity and aggregation of ALS-associated mutant SOD1. Hum Mol Genet 19:4774–4789. doi:10.1093/hmg/ddq408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Prudencio M, Hart PJ, Borchelt DR, Andersen PM (2009) Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease. Hum Mol Genet 18:3217–3226. doi:10.1093/hmg/ddp260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Qualls DA, Crosby K, Brown H, Borchelt DR (2013) An analysis of interactions between fluorescently-tagged mutant and wild-type SOD1 in intracellular inclusions. PLoS One 8:e83981. doi:10.1371/journal.pone.0083981.s024

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ravits J, Paul P, Jorg C (2007) Focality of upper and lower motor neuron degeneration at the clinical onset of ALS. Neurology 68:1571–1575. doi:10.1212/01.wnl.0000260965.20021.47

    Article  PubMed  Google Scholar 

  40. Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811. doi:10.1212/WNL.0b013e3181b6bbbd

    Article  PubMed Central  PubMed  Google Scholar 

  41. Schneider K, Fangerau H, Michaelsen B, Raab WH-M (2008) The early history of the transmissible spongiform encephalopathies exemplified by scrapie. Brain Res Bull 77:343–355. doi:10.1016/j.brainresbull.2008.09.012

    Article  PubMed  Google Scholar 

  42. Taraboulos A, Jendroska K, Serban D, Yang SL, Dearmond SJ, Prusiner SB (1992) Regional mapping of prion proteins in brain. Proc Natl Acad Sci USA 89:7620–7624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wang J, Farr GW, Zeiss CJ, Rodriguez-Gil DJ, Wilson JH, Furtak K, Rutkowski DT, Kaufman RJ, Ruse CI, Yates JR, Perrin S, Feany MB, Horwich AL (2009) Progressive aggregation despite chaperone associations of a mutant SOD1-YFP in transgenic mice that develop ALS. Proc Natl Acad Sci USA 106:1392–1397. doi:10.1073/pnas.0813045106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang J, Slunt H, Gonzales V, Fromholt D, Coonfield M, Copeland NG, Jenkins NA, Borchelt DR (2003) Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12:2753–2764. doi:10.1093/hmg/ddg312

    Article  CAS  PubMed  Google Scholar 

  45. Wang J, Xu G, Slunt HH, Gonzales V, Coonfield M, Fromholt D, Copeland NG, Jenkins NA, Borchelt DR (2005) Coincident thresholds of mutant protein for paralytic disease and protein aggregation caused by restrictively expressed superoxide dismutase cDNA. Neurobiol Dis 20:943–952. doi:10.1016/j.nbd.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  46. Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14:1105–1116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Todd Golde and Benoit Giasson for helpful advice over the course of these experiments. This work was supported by a Grant from the Packard Center for ALS Research at John’s Hopkins University and the Milton Safenowitz Post-Doctoral Fellowship for ALS Research awarded by the ALS Association. The authors declare they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jacob I. Ayers or David R. Borchelt.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayers, J.I., Fromholt, S., Koch, M. et al. Experimental transmissibility of mutant SOD1 motor neuron disease. Acta Neuropathol 128, 791–803 (2014). https://doi.org/10.1007/s00401-014-1342-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1342-7

Keywords

Navigation