Skip to main content
Log in

Anti-Aβ antibody target engagement: a response to Siemers et al.

  • Correspondence
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K, Kholodenko D, Lee C, Lee M, Motter R, Nguyen M, Reed A, Schenk D, Tang P, Vasquez N, Seubert P, Yednock T (2003) Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA 100(4):2023–2028. doi:10.1073/pnas.0436286100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Berglund L, Andrade J, Odeberg J, Uhlén M (2008) The epitope space of the human proteome. Protein Sci 17(4):606–613. doi:10.1110/ps.073347208

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Bonnycastle LL, Mehroke JS, Rashed M, Gong X, Scott JK (1996) Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage. J Mol Biol 258(5):747–762. doi:10.1006/jmbi.1996.0284

    Article  PubMed  CAS  Google Scholar 

  4. Bradbury L, LeBlanc J, McCarthy D (2004) ProteinChip® array-based amyloid β assays. In: Fung E (ed) Protein arrays. Methods in molecular biology, vol 264. Humana, USA, pp 245–257. doi:10.1385/1-59259-759-9:245

    Chapter  Google Scholar 

  5. DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98(15):8850–8855. doi:10.1073/pnas.151261398

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM (2002) Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295(5563):2264–2267. doi:10.1126/science.1067568

    Article  PubMed  CAS  Google Scholar 

  7. DeMattos RB, Bales KR, Parsadanian M, O’Dell MA, Foss EM, Paul SM, Holtzman DM (2002) Plaque-associated disruption of CSF and plasma amyloid-beta (Abeta) equilibrium in a mouse model of Alzheimer’s disease. J Neurochem 81(2):229–236

    Article  PubMed  CAS  Google Scholar 

  8. DeMattos RB, O’Dell MA, Parsadanian M, Taylor JW, Harmony JA, Bales KR, Paul SM, Aronow BJ, Holtzman DM (2002) Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 99(16):10843–10848. doi:10.1073/pnas.162228299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):311–321. doi:10.1056/NEJMoa1312889

    Article  PubMed  CAS  Google Scholar 

  10. Fagan T (2014) Crenezumab disappoints in phase 2, researchers remain hopeful. AlzForum. http://www.alzforum.org/news/conference-coverage/crenezumab-disappoints-phase-2-researchers-remain-hopeful

  11. Feinberg H, Saldanha JW, Diep L, Goel A, Widom A, Veldman GM, Weis WI, Schenk D, Basi GS (2014) Crystal structure reveals conservation of amyloid-beta conformation recognized by 3D6 following humanization to bapineuzumab. Alzheimers Res Ther 6(3):31. doi:10.1186/alzrt261

    Article  PubMed  PubMed Central  Google Scholar 

  12. Figurski MJ, Waligorska T, Toledo J, Vanderstichele H, Korecka M, Lee VM, Trojanowski JQ, Shaw LM (2012) Improved protocol for measurement of plasma beta-amyloid in longitudinal evaluation of Alzheimer’s disease neuroimaging initiative study patients. Alzheimers Dement 8(4):250–260. doi:10.1016/j.jalz.2012.01.001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ford MJ, Cantone JL, Polson C, Toyn JH, Meredith JE, Drexler DM (2008) Qualitative and quantitative characterization of the amyloid β peptide (Aβ) population in biological matrices using an immunoprecipitation–LC/MS assay. J Neurosci Methods 168(2):465–474. doi:http://dx.doi.org/10.1016/j.jneumeth.2007.11.019

  14. Gardberg A, Dice L, Pridgen K, Ko J, Patterson P, Ou S, Wetzel R, Dealwis C (2009) Structures of Abeta-related peptide–monoclonal antibody complexes. Biochemistry (Mosc) 48(23):5210–5217. doi:10.1021/bi9001216

    Article  CAS  Google Scholar 

  15. Gelfanova V, Higgs RE, Dean RA, Holtzman DM, Farlow MR, Siemers ER, Boodhoo A, Qian YW, He X, Jin Z, Fisher DL, Cox KL, Hale JE (2007) Quantitative analysis of amyloid-beta peptides in cerebrospinal fluid using immunoprecipitation and MALDI-Tof mass spectrometry. Brief Funct Genomic Proteomic 6(2):149–158. doi:10.1093/bfgp/elm010

    Article  PubMed  CAS  Google Scholar 

  16. James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299(5611):1362–1367. doi:10.1126/science.1079731

    Article  PubMed  CAS  Google Scholar 

  17. Kim JR, Muresan A, Lee KYC, Murphy RM (2004) Urea modulation of β-amyloid fibril growth: experimental studies and kinetic models. Protein Sci 13(11):2888–2898. doi:10.1110/ps.04847404

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Legleiter J, Czilli DL, Gitter B, DeMattos RB, Holtzman DM, Kowalewski T (2004) Effect of different anti-Aβ antibodies on Aβ fibrillogenesis as assessed by atomic force microscopy. J Mol Biol 335(4):997–1006. doi:http://dx.doi.org/10.1016/j.jmb.2003.11.019

  19. Mehta PD, Pirttila T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM (2000) Plasma and cerebrospinal fluid levels of amyloid beta proteins 1–40 and 1–42 in Alzheimer disease. Arch Neurol 57(1):100–105

    Article  PubMed  CAS  Google Scholar 

  20. Miles LA, Crespi GAN, Doughty L, Parker MW (2013) Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Rep 3. doi:http://www.nature.com/srep/2013/130218/srep01302/abs/srep01302.html#supplementary-information

  21. Roher AE, Esh CL, Kokjohn TA, Castano EM, Van Vickle GD, Kalback WM, Patton RL, Luehrs DC, Daugs ID, Kuo YM, Emmerling MR, Soares H, Quinn JF, Kaye J, Connor DJ, Silverberg NB, Adler CH, Seward JD, Beach TG, Sabbagh MN (2009) Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement 5(1):18–29. doi:10.1016/j.jalz.2008.10.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Ryan TM, Friedhuber A, Lind M, Howlett GJ, Masters C, Roberts BR (2012) Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Abeta (1–42). J Biol Chem 287(20):16947–16954. doi:10.1074/jbc.M111.321778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370(4):322–333. doi:10.1056/NEJMoa1304839

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359(6393):325–327. doi:10.1038/359325a0

    Article  PubMed  CAS  Google Scholar 

  25. Tan MS, Yu JT, Jiang T, Zhu XC, Guan HS, Tan L (2014) IL12/23 p40 inhibition ameliorates Alzheimer’s disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis 38(3):633–646. doi:10.3233/jad-131148

    PubMed  CAS  Google Scholar 

  26. Villemagne VL, Perez KA, Pike KE, Kok WM, Rowe CC, White AR, Bourgeat P, Salvado O, Bedo J, Hutton CA, Faux NG, Masters CL, Barnham KJ (2010) Blood borne amyloid-beta dimer correlates with clinical markers of Alzheimer’s disease. J Neurosci 30(18):6315–6322

    Article  PubMed  CAS  Google Scholar 

  27. Vom Berg J, Prokop S, Miller KR, Obst J, Kalin RE, Lopategui-Cabezas I, Wegner A, Mair F, Schipke CG, Peters O, Winter Y, Becher B, Heppner FL (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med 18(12):1812–1819. doi:10.1038/nm.2965

    Article  PubMed  CAS  Google Scholar 

  28. Watt A, Crespi GN, Down R, Ascher D, Gunn A, Perez K, McLean C, Villemagne V, Parker M, Barnham K, Miles L (2014) Do current therapeutic anti-Aβ antibodies for Alzheimer’s disease engage the target? Acta Neuropathol (Berl) 127(6):803–810. doi:10.1007/s00401-014-1290-2

    Article  CAS  Google Scholar 

  29. Watt AD, Perez KA, Rembach A, Sherrat NA, Hung LW, Johanssen T, McLean CA, Kok WM, Hutton CA, Fodero-Tavoletti M, Masters CL, Villemagne VL, Barnham KJ (2013) Oligomers, fact or artefact? SDS-PAGE induces dimerization of beta-amyloid in human brain samples. Acta Neuropathol 125(4):549–564. doi:10.1007/s00401-013-1083-z

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin J. Barnham or Luke A. Miles.

Additional information

K. J. Barnham and L. A. Miles contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watt, A.D., Crespi, G.A.N., Down, R.A. et al. Anti-Aβ antibody target engagement: a response to Siemers et al.. Acta Neuropathol 128, 611–614 (2014). https://doi.org/10.1007/s00401-014-1333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1333-8

Keywords

Navigation