Skip to main content

Advertisement

Log in

Isoform transition from four-repeat to three-repeat tau underlies dendrosomatic and regional progression of neurofibrillary pathology

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Regional progression of neurofibrillary tangles (NFTs) around the hippocampus was traced on thick sections double immunofluorolabeled with RD3 and RD4 antibodies, specific for three- and four-repeat tau, respectively. As reported, the cubic density of all tau-positive neurons was predominant in the entorhinal cortex and cornu ammonis (CA)1, and decreased progressively to the CA2–4 subregions. Among the three isoform profiles (RD3+/4−, RD3+/4+, and RD3−/4+), this regional gradient was replicated with RD3+/4− and RD3+/4+ neurons, while RD3−/4+ neurons exhibited the reverse gradient. Comparison of the subregion pairs confirmed a consistent profile shift along this gradient in every case regardless of the abundance of NFTs. To clarify the underlying mechanism of this regional profile shift, intraneuronal intensity of RD3 and RD4 immunoreactivity (IR) was quantified. Although their intensities were both lower in dendrites than in the soma, this gradient was steeper with RD4, leaving RD3 IR in dendrites. Dendritic arborization was abundant in RD3−/4+ pretangles, attenuated in RD3+/4+ neurons, and further attenuated in RD3+/4− ghost tangles. These findings suggest that dendritic RD4 IR retracts first, leaving RD3 IR in the dendrites. Taken together, this dendrite-oriented retraction initiates the gradual shift from RD3−/4+ pretangle neurons to RD3+/4− ghost tangles by way of RD3+/4+ NFTs. This intraneuronal profile shift may be a basis for the regional gradation featured by the similar profile shift during progression of NFT pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  PubMed  CAS  Google Scholar 

  2. Barghorn S, Mandelkow E (2002) Toward a unified scheme for the aggregation of tau into Alzheimer paired helical filaments. Biochemistry 41:14885–14896

    Article  PubMed  CAS  Google Scholar 

  3. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    Article  PubMed  CAS  Google Scholar 

  4. Boutajangout A, Boom A, Leroy K, Brion JP (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease. FEBS Lett 576:183–189

    Article  PubMed  CAS  Google Scholar 

  5. Braak E, Braak H (1997) Alzheimer’s disease: transiently developing dendritic changes in pyramidal cells of sector CA1 of the Ammon’s horn. Acta Neuropathol 93:323–325

    Article  PubMed  CAS  Google Scholar 

  6. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    Article  PubMed  CAS  Google Scholar 

  7. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  8. Braak H, Del Tredici K (2011) Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol 121:589–595

    Article  PubMed  CAS  Google Scholar 

  9. Campos-Pena V, Tapia-Ramirez J, Sanchez-Torres C, Meraz-Rios MA (2009) Pathological-like assembly of tau induced by a paired helical filament core expressed at the plasma membrane. J Alzheimers Dis 18:919–933

    PubMed  CAS  Google Scholar 

  10. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913

    Article  PubMed  CAS  Google Scholar 

  11. Connell JW, Rodriguez-Martin T, Gibb GM, Kahn NM, Grierson AJ, Hanger DP, Revesz T, Lantos PL, Anderton BH, Gallo JM (2005) Quantitative analysis of tau isoform transcripts in sporadic tauopathies. Brain Res Mol Brain Res 137:104–109

    Article  PubMed  CAS  Google Scholar 

  12. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697

    Article  PubMed  Google Scholar 

  13. de Silva R, Lashley T, Gibb G, Hanger D, Hope A, Reid A, Bandopadhyay R, Utton M, Strand C, Jowett T, Khan N, Anderton B, Wood N, Holton J, Revesz T, Lees A (2003) Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol Appl Neurobiol 29:288–302

    Article  PubMed  Google Scholar 

  14. Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746

    Article  PubMed  Google Scholar 

  15. Duyckaerts C, Colle MA, Dessi F, Grignon Y, Piette F, Hauw JJ (1998) The progression of the lesions in Alzheimer disease: insights from a prospective clinicopathological study. J Neural Transm Suppl 53:119–126

    Article  PubMed  CAS  Google Scholar 

  16. Eidenmuller J, Fath T, Maas T, Pool M, Sonte E, Brandt R (2001) Phosphorylation-mimicking glutamate clusters in the prolin-rich region are sufficient to simulate the functional deficiencies of hyperphosphorylated tau protein. Biochem J 357:759–767

    Article  PubMed  CAS  Google Scholar 

  17. Elbaum-Garfinkle S, Ramlall T, Rhoades E (2010) The role of the lipid bilayer in tau aggregation. Biophys J 98:2722–2730

    Article  PubMed  CAS  Google Scholar 

  18. Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  PubMed  CAS  Google Scholar 

  19. Garden GA, La Spada AR (2012) Intercellular (mis)communication in neurodegenerative disease. Neuron 73:886–901

    Article  PubMed  CAS  Google Scholar 

  20. Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H, Riederer P, Moller HJ, Andreadis A, Henkel K, Stamm S (2006) The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem 96:635–644

    Article  PubMed  CAS  Google Scholar 

  21. Gouras GK, Tampellini D, Takahashi RH, Capetillo-Zarate E (2010) Intraneuronal beta-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol 119:523–541

    Article  PubMed  CAS  Google Scholar 

  22. Gray EG, Paula-Barbosa M, Roher A (1987) Alzheimer’s disease: paired helical filaments and cytomembranes. Neuropathol Appl Neurobiol 13:91–110

    Article  PubMed  CAS  Google Scholar 

  23. Hall GF, Chu B, Lee G, Yao J (2000) Human tau filaments induce microtubule and synapse loss in an in vivo model of neurofibrillary degenerative disease. J Cell Sci 113:1373–1387

    PubMed  CAS  Google Scholar 

  24. Hardy J, Revesz T (2012) The spread of neurodegenerative disease. N Engl J Med 366:2126–2128

    Article  PubMed  CAS  Google Scholar 

  25. Harris JA, Devidze N, Verret L, Ho K, Halabisky B, Thwin MT, Kim D, Hamto P, Lo I, Yu GQ, Palop JJ, Masliah E, Mucke L (2010) Transsynaptic progression of amyloid-beta-induced neuronal dysfunction within the entorhinal-hippocampal network. Neuron 68:428–441

    Article  PubMed  CAS  Google Scholar 

  26. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  27. Ikeda K, Akiyama H, Haga C, Haga S (1992) Evidence that neurofibrillary tangles undergo glial modification. Acta Neuropathol 85:101–104

    Article  PubMed  CAS  Google Scholar 

  28. Ingelsson M, Ramasamy K, Cantuti-Castelvetri I, Skoglund L, Matsui T, Orne J, Kowa H, Raju S, Vanderburg CR, Augustinack JC, de Silva R, Lees AJ, Lannfelt L, Growdon JH, Frosch MP, Standaert DG, Irizarry MC, Hyman BT (2006) No alteration in tau exon 10 alternative splicing in tangle-bearing neurons of the Alzheimer’s disease brain. Acta Neuropathol 112:439–449

    Article  PubMed  CAS  Google Scholar 

  29. Iseki E, Yamamoto R, Murayama N, Minegishi M, Togo T, Katsuse O, Kosaka K, Akiyama H, Tsuchiya K, de Silva R, Andrew L, Arai H (2006) Immunohistochemical investigation of neurofibrillary tangles and their tau isoforms in brains of limbic neurofibrillary tangle dementia. Neurosci Lett 405:29–33

    Article  PubMed  CAS  Google Scholar 

  30. Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graph Image Process 29:273–285

    Article  Google Scholar 

  31. Kim W, Lee S, Jung C, Ahmed A, Lee G, Hall GF (2010) Interneuronal transfer of human tau between Lamprey central neurons in situ. J Alzheimers Dis 19:647–664

    PubMed  CAS  Google Scholar 

  32. Kitamura T, Sugimori K, Sudo S, Kobayashi K (2005) Relationship between microtubule-binding repeats and morphology of neurofibrillary tangle in Alzheimer’s disease. Acta Neurol Scandinav 112:327–334

    Article  CAS  Google Scholar 

  33. Kuwahara T, Tonegawa R, Ito G, Mitani S, Iwatsubo T (2012) Phosphorylation of alpha-synuclein protein at Ser-129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans. J Biol Chem 287:7098–7109

    Article  PubMed  CAS  Google Scholar 

  34. Lace G, Savva GM, Forster G, de Silva R, Brayne C, Matthews FE, Barclay JJ, Dakin L, Ince PG, Wharton SB (2009) Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study. Brain 132:1324–1334

    Article  PubMed  CAS  Google Scholar 

  35. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200

    Article  PubMed  CAS  Google Scholar 

  36. Lin WL, Lewis J, Yen SH, Hutton M, Dickson DW (2003) Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau. J Neurocytol 32:1091–1105

    Article  PubMed  CAS  Google Scholar 

  37. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302

    Article  PubMed  CAS  Google Scholar 

  38. Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    Article  PubMed  CAS  Google Scholar 

  39. Mena R, Edwards PC, Harrington CR, Mukaetova-Ladinska EB, Wischik CM (1996) Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathol 91:633–641

    Article  PubMed  CAS  Google Scholar 

  40. Metuzals J, Robitaille Y, Houghton S, Gauthier S, Leblanc R (1988) Paired helical filaments and the cytoplasmic-nuclear interface in Alzheimer’s disease. J Neurocytol 17:827–833

    Article  PubMed  CAS  Google Scholar 

  41. Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796

    Article  PubMed  Google Scholar 

  42. Okuyama K, Nishiura C, Mizushima F, Minoura K, Sumida M, Taniguchi T, Tomoo K, Ishida T (2008) Linkage-dependent contribution of repeat peptides to self-aggregation of three- or four-repeat microtubule-binding domains in tau protein. FEBS J 275:1529–1539

    Article  PubMed  CAS  Google Scholar 

  43. Perreault S, Bousquet O, Lauzon M, Paiement J, Leclerc N (2009) Increased association between rough endoplasmic reticulum membranes and mitochondria in transgenic mice that express P301L tau. J Neuropathol Exp Neurol 68:503–514

    Article  PubMed  CAS  Google Scholar 

  44. Pooler AM, Hanger DP (2010) Functional implications of the association of tau with the plasma membrane. Biochem Soc Trans 38:1012–1015

    Article  PubMed  CAS  Google Scholar 

  45. Raj A, Kuceyeski A, Weiner M (2012) A network diffusion model of disease progression in dementia. Neuron 73:1204–1215

    Article  PubMed  CAS  Google Scholar 

  46. Sheffield LG, Miskiewicz HB, Tannenbaum LB, Mirra SS (2006) Nuclear pore complex proteins in Alzheimer disease. J Neuropathol Exp Neurol 65:45–54

    Article  PubMed  CAS  Google Scholar 

  47. Siddiqua A, Margittai M (2010) Three- and four-repeat Tau coassemble into heterogeneous filaments: an implication for Alzheimer disease. J Biol Chem 285:37920–37926

    Article  PubMed  CAS  Google Scholar 

  48. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA (2011) A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 12:585–601

    Article  PubMed  CAS  Google Scholar 

  49. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95:7737–7741

    Article  PubMed  CAS  Google Scholar 

  50. Su JH, Deng G, Cotman CW (1997) Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol Dis 4:365–375

    Article  PubMed  CAS  Google Scholar 

  51. Togo T, Akiyama H, Iseki E, Uchikado H, Kondo H, Ikeda K, Tsuchiya K, de Silva R, Lees A, Kosaka K (2004) Immunohistochemical study of tau accumulation in early stages of Alzheimer-type neurofibrillary lesions. Acta Neuropathol 107:504–508

    Article  PubMed  CAS  Google Scholar 

  52. Uchihara T, Hara M, Nakamura A, Hirokawa K (2012) Tangle evolution linked to differential 3- and 4-repeat tau isoform deposition: a double immunofluorolabeling study using two monoclonal antibodies. Histochem Cell Biol 137:261–267

    Article  PubMed  CAS  Google Scholar 

  53. Uchihara T, Iwabuchi K, Funata N, Yagishita S (2002) Attenuated nuclear shrinkage in neurons with nuclear aggregates–a morphometric study on pontine neurons of Machado-Joseph disease brains. Exp Neurol 178:124–128

    Article  PubMed  Google Scholar 

  54. Uchihara T, Nakamura A, Shibuya K, Yagishita S (2011) Specific detection of pathological three-repeat tau after pretreatment with potassium permanganate and oxalic acid in PSP/CBD brains. Brain Pathol 21:180–188

    Article  PubMed  CAS  Google Scholar 

  55. Uchihara T, Nakamura A, Yamazaki M, Mori O (2001) Evolution from pretangle neurons to neurofibrillary tangles monitored by thiazin red combined with Gallyas method and double immunofluorescence. Acta Neuropathol 101:535–539

    PubMed  CAS  Google Scholar 

  56. Umeda Y, Taniguchi S, Arima K, Piao YS, Takahashi H, Iwatsubo T, Mann D, Hasegawa M (2004) Alterations in human tau transcripts correlate with those of neurofilament in sporadic tauopathies. Neurosci Lett 359:151–154

    Article  PubMed  CAS  Google Scholar 

  57. Warren JD, Rohrer JD, Hardy J (2012) Disintegrating brain networks: from syndromes to molecular nexopathies. Neuron 73:1060–1062

    Article  PubMed  CAS  Google Scholar 

  58. Yamaguchi H, Nakazato Y, Kawarabayashi T, Ishiguro K, Ihara Y, Morimatsu M, Hirai S (1991) Extracellular neurofibrillary tangles associated with degenerating neurites and neuropil threads in Alzheimer-type dementia. Acta Neuropathol 81:603–609

    Article  PubMed  CAS  Google Scholar 

  59. Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2 +) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30:11938–11950

    Article  PubMed  CAS  Google Scholar 

  60. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW (2012) Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73:1216–1227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Grants-in-Aid for Scientific Research (22500325) from the Ministry of Education, Culture, Sports, Science, and Technology, Grant from Japan Foundation for Neuroscience and Mental Health, the Mitsui Life Social Welfare Foundation, and the Tokyo Metropolitan Institute of Medical Science project “Mechanism for Early Diagnosis and Prevention of Parkinson’s disease.” The authors are grateful to Professor Hiroshi Oyama, Department of Clinical Information Engineering, Health Services Science, School of Public Health, Graduate School of Medicine, The University of Tokyo and Dr. Akihiko Morita, Division of Neurology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan for their advice in the statistical analyses and to Ms Ayako Nakamura for her excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiki Uchihara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

401_2013_1097_MOESM1_ESM.jpg

Supplementary material 1 (JPEG 7,825 kb) Supplementary Fig. 1: RD3–/4+ pretangle-predominant region (case 6, CA3). A 2 × 4 tiling of a high-resolution unit (1,024 × 1,024 pixels) to encompass the XY surface of 1,452 μm × 767 μm of a double-labeled section. RD3−/4+ pretangles (c, green, arrowheads) were frequent in this subregion, while RD3+/4+ NFTs (c, yellow, empty triangles) and RD3+/4− ghost tangles (c, red, arrows) were rare. (bar = 100 μm, a green/RD4, b red/RD3, c merged)

401_2013_1097_MOESM2_ESM.jpg

Supplementary material 2 (JPEG 10079 kb) Supplementary Fig. 2: RD3+/4− ghost tangle-predominant region (case 7, CA1). A 3 × 4 tiling of a high-resolution unit (1,024 × 1,024 pixels) to encompass the XY surface of 1,460 μm × 1,113 μm of a double-labeled section. RD3+/4− ghost tangles (c, red, arrows) were frequent in this subregion, while RD3+/RD4+ NFTs (c, yellow, empty triangles) and RD3−/4+ pretangles (c green, arrowheads) were rare. (bars = 100 μm, a green/RD4, b red/RD3, c merged)

Supplementary material 3 (JPEG 2762 kb)

Supplementary material 4 (JPEG 2029 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, M., Hirokawa, K., Kamei, S. et al. Isoform transition from four-repeat to three-repeat tau underlies dendrosomatic and regional progression of neurofibrillary pathology. Acta Neuropathol 125, 565–579 (2013). https://doi.org/10.1007/s00401-013-1097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1097-6

Keywords

Navigation