Skip to main content

Advertisement

Log in

Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Lithium, a widely used drug for treating affective disorders, is known to inhibit glycogen synthase kinase-3 (GSK-3), which is one of the major tau kinases. Thus, lithium could have therapeutic benefit in neurodegenerative tauopathies by reducing tau hyperphosphorylation. We tested this hypothesis and showed that long-term administration of lithium at relatively low therapeutic concentrations to transgenic mice that recapitulate Alzheimer’s disease (AD)-like tau pathologies reduces tau lesions, primarily by promoting their ubiquitination rather than by inhibiting tau phosphorylation. These findings suggest novel mechanisms whereby lithium treatment could ameliorate tauopathies including AD. Because lithium also has been shown to reduce the burden of amyloid-β pathologies, it is plausible that lithium could reduce the formation of both amyloid plaques and tau tangles, the two pathological hallmarks of AD, and thereby ameliorate the behavioral deficits in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928

    Article  PubMed  Google Scholar 

  2. Belmaker RH (2004) Bipolar disorder. N Engl J Med 351:476–486

    Article  PubMed  Google Scholar 

  3. Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89:1313–1317

    Article  PubMed  Google Scholar 

  4. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    Article  PubMed  Google Scholar 

  5. Chalecka-Franaszek E, Chuang DM (1999) Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci USA 96:8745–8750

    Article  PubMed  Google Scholar 

  6. Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J (2004) Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J 18:1162–1164

    Article  PubMed  Google Scholar 

  7. Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    Article  PubMed  Google Scholar 

  8. David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG (2002) Proteasomal degradation of tau protein. J Neurochem 83:176–185

    Article  PubMed  Google Scholar 

  9. Delobel P, Leroy O, Hamdane M, Sambo AV, Delacourte A, Buee L (2005) Proteasome inhibition and Tau proteolysis: an unexpected regulation. FEBS Lett 579:1–5

    Article  PubMed  Google Scholar 

  10. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW (1992) Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 3:1141–1154

    PubMed  Google Scholar 

  11. Eldar-Finkelman H (2002) Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med 8:126–132

    Article  PubMed  Google Scholar 

  12. Greenberg SG, Davis P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis.Proc Natl Acad Sci USA 87:5827–5831

    PubMed  Google Scholar 

  13. Higuchi M, Ishihara T, Zhang B, Hong M, Andreadis A, Trojanowski J, Lee VMY (2002) Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 35:433–446

    Article  PubMed  Google Scholar 

  14. Hong M, Chen DC, Klein PS, Lee VMY (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272:25326–25332

    Article  PubMed  Google Scholar 

  15. Hongisto V, Smeds N, Brecht S, Herdegen T, Courtney MJ, Coffey ET (2003) Lithium blocks the c-Jun stress response and protects neurons via its action on glycogen synthase kinase 3. Mol Cell Biol 23:6027–6036

    Article  PubMed  Google Scholar 

  16. Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VMY (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762

    Article  PubMed  Google Scholar 

  17. Ishihara T, Higuchi M, Zhang B, Yoshiyama Y, Hong M, Trojanowski JQ, Lee VMY (2001) Attenuated neurodegenerative disease phenotype in tau transgenic mouse lacking neurofilaments. J Neurosci 21:6026–6035

    PubMed  Google Scholar 

  18. Ishihara T, Zhang B, Higuchi M, Yoshiyama Y, Trojanowski JQ, Lee VMY (2001) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158:555–562

    PubMed  Google Scholar 

  19. Lee VMY, Trojanowski JQ (2001) Transgenic mouse models of tauopathies: prospects for animal models of Pick’s disease. Neurology 56:S26–30

    Article  PubMed  Google Scholar 

  20. Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  PubMed  Google Scholar 

  21. Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol 103:91–99

    Article  PubMed  Google Scholar 

  22. Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disord 4:137–144

    Article  PubMed  Google Scholar 

  23. Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB, Faulk MW, Koch S, Glitz DA, Jolkovsky L, Manji HK (2000) Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol Psychiatry 48:1–8

    Article  PubMed  Google Scholar 

  24. Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK (2000) Lithium-induced increase in human brain grey matter. Lancet 356:1241–1242

    Article  PubMed  Google Scholar 

  25. Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9:522–530

    Article  PubMed  Google Scholar 

  26. Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J (1997) Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons. FEBS Lett 411:183–188

    Article  PubMed  Google Scholar 

  27. Munoz-Montano JR, Lim F, Moreno FJ, Avila J, Diaz-Nido J (1999) Glycogen synthase kinase-3 modulates neurite outgrowth in cultured neurons: possible Implications for neurite pathology in Alzheimer’s disease. J Alzheimers Dis 1:361–378

    PubMed  Google Scholar 

  28. Nakashima H, Ishihara T, Yokota O, Terada S, Trojanowski JQ, Lee VMY, Kuroda S (2004) Effects of alpha-tocopherol on an animal model of tauopathies. Free Radic Biol Med 37:176–186

    Article  PubMed  Google Scholar 

  29. Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990-6995

    Article  PubMed  Google Scholar 

  30. Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    PubMed  Google Scholar 

  31. Perez M, Hernandez F, Lim F, Diaz-Nido J, Avila J (2003) Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis 5:301–308

    PubMed  Google Scholar 

  32. Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, De Lucia M, McGowan E, Lewis J, Prihar G, Kim J, Dillmann WH, Browne SE, Hall A, Voellmy R, Tsuboi Y, Dawson TM, Wolozin B, Hardy J, Hutton M (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13:703–714

    Article  PubMed  Google Scholar 

  33. Phiel CJ, Wilson CA, Lee VMY, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423:435–439

    Article  PubMed  Google Scholar 

  34. Shimura H, Schwartz D, Gygi SP, Kosik KS (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279:4869–4876

    Article  PubMed  Google Scholar 

  35. Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277:44701–44708

    Article  PubMed  Google Scholar 

  36. Takahashi M, Yasutake K, Tomizawa K (1999) Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3beta-dependent phosphorylation of juvenile tau in cultured hippocampal neurons. J Neurochem 73:2073–2083

    PubMed  Google Scholar 

  37. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    PubMed  Google Scholar 

  38. Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. P. Davies for PHF1 antibody. We also thank S. Fujisawa, M. Onbe, T. Kanamori and R. Wada for technical assistance. This work was supported by grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology (T.I.), Taisho Pharmaceutical Co., Ltd. (T.I.), the Zikei Institute of Psychiatry (T.I., H.N.), the National Institutes of Health (V.M.-Y.L., J.Q.T.), as well as by grants from the Marian S. Ware Alzheimer Program (V.M.-Y.L., J.Q.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, H., Ishihara, T., Suguimoto, P. et al. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol 110, 547–556 (2005). https://doi.org/10.1007/s00401-005-1087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-005-1087-4

Keywords

Navigation