Skip to main content
Log in

An RVE-based multiscale modeling method for constitutive relations

A multiscale method to define: viscosity and friction coefficients

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This article reports an efficient method to characterize constitutive responses based on multiscale modeling for fluid flow in heterogeneous media based on the concept of representative volume element (RVE). Between different scales, it is considered as the basic principles for down-scaling information the conservation of velocity and of the strain rate tensor. Within this context, we formulate (i) the problem to be solved at the micro-scale, (ii) the up-scaling procedure which involves homogenization rules, and (iii) the generalized principle of multiscale virtual power. The complete theory for constitutive modeling is revisited and shown that when employing multiscale analysis among the suitable variational arguments we are able to obtain, in a straightforward manner, new constitutive behavior between kinematic motions and actions. Some examples of application of fluid flow in heterogeneous media with obstacles are presented to show the consequences of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Without loss of generality these volumetric forces are the Lagrange multipliers.

References

  • Allaire G (1991a) Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes. Arch Ration Mech Anal 113(3):209–259. doi:10.1007/BF00375066

    Article  Google Scholar 

  • Allaire G (1991b) Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes II: non-critical sizes of the holes for a volume distribution and a surface distribution of holes. Arch Ration Mech Anal 113(3):261–298. doi:10.1007/BF00375066

    Article  Google Scholar 

  • Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23(6):1482–1518. doi:10.1137/0523084

    Article  Google Scholar 

  • Auriault JL (2009) On the domain of validity of Brinkman’s equation. Transp Porous Media 79(2):215–223. doi:10.1007/s11242-008-9308-7

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Dover Civil and Mechanical Engineering

  • Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94:511–525. doi:10.1103/PhysRev.94.511

    Article  Google Scholar 

  • Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA (2016) Variational foundations and generalized unified theory of RVE-based multiscale models. Arch Comput Meth Eng 23(2):191–253. doi:10.1007/s11831-014-9137-5

    Article  Google Scholar 

  • Brinkman HC (1949) A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul Combust 1(1):27. doi:10.1007/BF02120313

    Article  Google Scholar 

  • Brown DL, Popov P, Efendiev Y (2011) On homogenization of stokes flow in slowly varying media with applications to fluid–structure interaction. GEM - International Journal on Geomathematics 2(2):281–305. doi:10.1007/s13137-011-0025-y

    Article  Google Scholar 

  • Chen S, Doolen GD (1998) Lattice boltzmann method for fluid flows. Ann Rev Fluid Mech 30(1):329–364. doi:10.1146/annurev.fluid.30.1.329

    Article  Google Scholar 

  • Feireisl E, Novotnẏ A, Takahashi T (2010) Homogenization and singular limits for the complete Navier-Stokes-Fourier system. Journal des Mathematiques Pures et Appliquees 94(1):33–57. doi:10.1016/j.matpur.2009.11.006

    Article  Google Scholar 

  • Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1–4):344–354. doi:10.1016/S0927-0256(99)00077-4

    Article  Google Scholar 

  • Feyel F, Chaboche JL (2000) FE2 Multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3-4):309–330. doi:10.1016/S0045-7825(99)00224-8

    Article  Google Scholar 

  • Frémond M (2002) Non-smooth thermomechanics. Springer, Berlin

    Book  Google Scholar 

  • Germain P (1973) On the method of virtual power in continuum mechanics. SIAM J Appl Math 25(3):556–575. doi:10.2140/jomms.2009.4.281

    Article  Google Scholar 

  • Griebel M, Klitz M (2010) Homogenization and numerical simulation of flow in geometries with textile microstructures. SIAM: Multiscale Model Simul 8(4):1439–1460

    Google Scholar 

  • He X, Luo LS (1997) Lattice boltzmann model for the incompressible Navier-Stokes equation. J Stat Phys 88(3/4):927–944. doi:10.1023/B:JOSS.0000015179.12689.e4

    Article  Google Scholar 

  • Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222. doi:10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  • Hughes TJ, Feijóo GR, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166(1-2):3–24. doi:10.1016/S0045-7825(98)00079-6

    Article  Google Scholar 

  • Icardi M, Boccardo G, Marchisio DL, Tosco T, Sethi R (2014) Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media. Phys Rev E 90(1):013,032. doi:10.1103/PhysRevE.90.013032

    Article  Google Scholar 

  • Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Meth Eng 16(1):31–75. doi:10.1007/s11831-008-9028-8

    Article  Google Scholar 

  • Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) Approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48. doi:10.1007/s004660000212

    Article  Google Scholar 

  • Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54(8):1235–1260. doi:10.1002/nme.541

    Article  Google Scholar 

  • Mandel J (1971) Plasticité classique et viscoplasticité, courses and lectures no. 97, int Center for Mech. Springer, Udine

    Google Scholar 

  • Maugin GA (1980) The method of virtual power in continuum mechanics: application to coupled fields. Acta Mech 35(1-2):1–70. doi:10.1007/BF01190057

    Article  Google Scholar 

  • Maugin GA (2013) Continuum mechanics through the twentieth century, vol 196. Springer, Berlin. doi:10.1007/978-94-007-6353-1

  • Mohamad A, Kuzmin A (2010) A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transfer 53(5-6):990–996. doi:10.1016/j.ijheatmasstransfer.2009.11.014

    Article  Google Scholar 

  • Noll W (1958) A mathematical theory of the mechanical behavior of continuous media. Arch Ration Mech Anal 2(1):197–226. doi:10.1007/BF00277929

    Article  Google Scholar 

  • Ricker S, Mergheim J, Steinmann P, Müller R (2010) A comparison of different approaches in the multi-scale computation of configurational forces. Int J Fract 166(1-2):203–214. doi:10.1007/s10704-010-9525-2

    Article  Google Scholar 

  • Saeb S, Steinmann P, Javili A (2016) Aspects of computational homogenization at finite deformations. a unifying review from reuss’ to voigt’s bound. Appl Mech Rev (c):in review

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory. Lectures Notes in Physics. Springer

  • Sandström C, Larsson F (2013) Variationally consistent homogenization of stokes flow in porous media. Int J Multiscale Comput Eng 11(2):117–138. doi:10.1615/IntJMultCompEng.2012004069

    Article  Google Scholar 

  • Sandström C, Larsson F (2016) On bounded approximations of periodicity for computational homogenization of stokes flow in porous media. Int J Numer Methods Eng doi:10.1002/nme.5281

  • Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190(40-41):5427–5464. doi:10.1016/S0045-7825(01)00179-7

    Article  Google Scholar 

  • Truesdell C, Rajagopal KR (2000) An introduction to the mechanics of fluids. Birkhäuser, Boston

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the resources provided by the Brazilians research councils FAPEMIG and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés R. Valdez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdez, A.R., Rocha, B.M. & Igreja, I. An RVE-based multiscale modeling method for constitutive relations. Rheol Acta 56, 461–476 (2017). https://doi.org/10.1007/s00397-017-1006-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-017-1006-3

Keywords

Navigation