Skip to main content
Log in

Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheology and microstructure of two different cellulose nanocrystals (CNC) samples possessing different degrees of sulfation are studied over a broad concentration range of 1 to 15 wt%. CNC suspensions are isotropic at low concentration and experience two different transitions as concentration increases. First, they form chiral nematic liquid crystals above a first critical concentration where the samples exhibit a fingerprint texture and the viscosity profile shows a three-region behavior, typical of liquid crystals. By further increasing the concentration, CNC suspensions form gels above a second critical concentration, where the viscosity profile shows a single shear-thinning behavior over the whole range of shear rates investigated. It has been found that the degree of sulfation of CNC particles has a significant effect on the critical concentrations at which transitions from isotropic to liquid crystal and liquid crystal to gel occur. Rheological properties and microstructure of these suspensions have been studied using polarized optical microscopy combined with rheometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142(1):75–82

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga SH, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33:6011–6016

    Article  CAS  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 377:297–303

    Article  CAS  Google Scholar 

  • Davis VA, Ericson LM, Parra-Vasquez ANG, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE, Adams WW, Hauge RH, Smalley RE, Pasquali M (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37:154–160

    Article  CAS  Google Scholar 

  • Devendra R, Hatzikiriakos SG, Vogel R (2006) Rheology of metallocene polyethylene based nanocomposites: influence of graft modification. J Rheol 50:415–434

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) The Cox–Merz rule extended—a rheological model for concentrated suspensions and other materials with a yield stress. J Rheol 35(4):647–685

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelation in nanocrystalline cellulose extraction. Can J Chem 88(3):392–402

    CAS  Google Scholar 

  • Kang K, Lettinga MP, Dogic Z, Dhont JKG (2006) Vorticity banding in rodlike virus suspensions. Phys Rev E 74:026307–1–12

    Article  Google Scholar 

  • Lettinga MP, Dogic Z, Wang H, Vermant J (2005) Flow behavior of colloidal rodlike viruses in the nematic phase. Langmuir 21:8048–8057

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Yue Y, Chen M, Wu Q (2011) Structure and rheology of nanocrystalline cellulose, carbohydrate. Polymer 84:316–322

    CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633

    Article  CAS  Google Scholar 

  • Marchessault RH, Morehead FF, Koch MJ (1961) Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape. J Colloid Sci 16:327–344

    Article  CAS  Google Scholar 

  • Muliawan EB, Hatzikiriakos SG (2007) Rheology of mozzarella cheese. Intern Dairy J 17:1063–1072

    Article  Google Scholar 

  • Odijk T (1986) Theory of lyotropic liquid crystals. Macromolecules 19:2313–2329

    Article  CAS  Google Scholar 

  • Onogi S, Asada T (1980) In rheology and rheo-optics of polymer liquid crystals. In: Astarita G, Marrucci G, Nicolais L (eds) Proceedings of the eighth international congress on rheology. Plenum, Napoles, pp 126–136

    Google Scholar 

  • Onsager L (1949) The effect of shape on the interactions of colloid particles. Ann N Y Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Orts WJ, Godbout L, Marchessault RH, Revol JF (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725

    Article  CAS  Google Scholar 

  • Revol JF, Marchessault RH (1994) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335

    Article  Google Scholar 

  • Revol J, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Ripoll M, Holmqvist P, Winkler RG, Gompper G, Dhont JKG, Lettinga MP (2008) Attractive colloidal rods in shear flow. Phys Rev Lett 101:168302–1–4

    Article  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133

    Article  CAS  Google Scholar 

  • Sofou S, Muliawan EB, Hatzikiriakos SG, Mitsoulis E (2008) Rheological characterization and constitutive modelling of bread dough. Rheol Acta 47:369–381

    Article  CAS  Google Scholar 

  • Urena-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998

    Article  CAS  Google Scholar 

  • Winter HH (2009) Three view of viscoelasticity for Cox–Merz materials. Rheol Acta 48:241–243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge NSERC and FPInnovations for financial support under grant CRD-379851-2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafeiei-Sabet, S., Hamad, W.Y. & Hatzikiriakos, S.G. Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52, 741–751 (2013). https://doi.org/10.1007/s00397-013-0722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0722-6

Keywords

Navigation