Skip to main content
Log in

Ionization of short weak polyelectrolytes: when size matters

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The ionization of short weak polyelectrolytes in dilute solutions is investigated by 1H nuclear magnetic resonance (NMR). The increase of the pH of the medium causes both the ionization of the polyacids and, due to the intra-molecular repulsions, the swelling of the chains. As a result, a noticeable effect of the pH change on the NMR chemical shift δ, and on the self-diffusion coefficient D is observed. The ionization of the polyelectrolyte occurs at higher pH as the length of the chain increases. The variation of the self-diffusion coefficient with pH exhibits the opposite dependence on the length of the chain. However, no detectable effect of the length of the polyelectrolyte chain on the evolution of the chemical shift with pH is observed. These apparent contradictions are examined to clarify the impact of the chain length on the polyelectrolyte properties, and the counterion role in the ionization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang X, Yin Y, Wang C, Tian X (2014) Decolorization of anionic dye solutions using the hydrophobically modified polyelectrolytes containing beta-cyclodextrin moieties. Chem Eng J 253:183–189

    Article  CAS  Google Scholar 

  2. Yi C, Hu R, Ren H, Hu X, Wang S, Gong X, Cao Y (2014) Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells. J Photonics Energy 4:043,099–043,108

    Article  Google Scholar 

  3. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, vol 2, 4th edn. Wiley Interscience, New York

    Google Scholar 

  4. Knappe P, Bienert R, Weidner S, Thuenemann AF (2010) Poly(acrylic acid): a combined analysis with field-flow fractionation and SAXS. Macromol Chem Phys 211(19):2148–2153

    Article  CAS  Google Scholar 

  5. Roger GM, Durand-Vidal S, Bernard O, Mériguet G., Altmann S, Turq P (2010) Characterization of humic substances and polyacrylic acid: a high precision conductimetry study. Colloids Surf A 356(1-3):51–57

    Article  CAS  Google Scholar 

  6. Laguecir A, Ulrich S, Labille J, Fatin-Rouge N, Stoll S, Buffle J (2006) Size and pH effect on electrical and conformational behavior of poly(acrylic acid): simulation and experiment. Eur Polym J 42(5):1135–1144

    Article  CAS  Google Scholar 

  7. Schweins R, Hollmann J, Huber K (2003) Dilute solution behaviour of sodium polyacrylate chains in aqueous NaCl solutions. Polymer 44(23):7131–7141

    Article  CAS  Google Scholar 

  8. Gonzalez G, de la Cal JC, Asua JM (2011) Flocculation efficiency of blends of short and long chain polyelectrolytes. Colloids Surf A 385(1-3):166–170

    Article  CAS  Google Scholar 

  9. Yu S, Xu X, Yigit C, van der Giet M, Zidek W, Jankowski J, Dzubiella J, Ballauff M (2015) Interaction of human serum albumin with short polyelectrolytes: a study by calorimetry and computer simulations. Soft Matter 11(23):4630–4639

    Article  CAS  Google Scholar 

  10. Swift T, Swanson L, Geoghegan M, Rimmer S (2016) The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass. Soft Matter 12(9):2542–2549

    Article  CAS  Google Scholar 

  11. Price W (2009) NMR studies of translational motion: principles and applications. Cambridge molecular science. Cambridge University Press

  12. Scheler U (2009) NMR on polyelectrolytes. Curr Opin Colloid Interface Sci 14(3):212–215

    Article  CAS  Google Scholar 

  13. Callaghan P (2011) Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. OUP, Oxford

    Book  Google Scholar 

  14. Hatada K, Kitayama T (2004) NMR spectroscopy of polymers. Springer, Berlin

    Book  Google Scholar 

  15. Saalwächter K, Reichert D (2010) Polymer applications of NMR. In: Encycl. Spectrosc. Spectrom. Elsevier, pp 2221–2236.

  16. Walderhaug H, Söderman O, Topgaard D (2010) Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc 56(4):406–425

    Article  CAS  Google Scholar 

  17. Šarac B, Mériguet G, Ancian B, Bešter-Rogač M (2013) Salicylate isomer-specific effect on the micellization of dodecyltrimethylammonium chloride: large effects from small changes. Langmuir 29(14):4460–4469

    Article  Google Scholar 

  18. Giesecke M, Mériguet G, Hallberg F, Fang Y, Stilbs P, Furó I (2015) Ion association in aqueous and non-aqueous solutions probed by diffusion and electrophoretic NMR. Phys Chem Chem Phys 17(5):3402–3408

    Article  CAS  Google Scholar 

  19. Hostnik G, Bončina M, Dolce C, Mériguet G, Rollet AL, Cerar J (2016) Influence of counterions on the conformation of conjugated polyelectrolytes: the case of poly(thiophen-3-ylacetic acid). Phys Chem Chem Phys 18(36):25,036–25,047

    Article  CAS  Google Scholar 

  20. Bezencon J, Wittwer MB, Cutting B, Smiesko M, Wagner B, Kansy M, Ernst B (2014) pK(a) determination by H-1 NMR spectroscopy—an old methodology revisited. J Pharm Biomed Anal 93:147–155

    Article  CAS  Google Scholar 

  21. Pristinski D, Kozlovskaya V, Sukhishvili SA (2005) Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. J Chem Phys 122(1):14,907

    Article  Google Scholar 

  22. McDonough R, Cueto R, Phillies GDJ, Russo PS, Dorman D, Streletzky KA (2015) Fluorescent labeling can alter polymer solution dynamics. Macromolecules 48(19):7245–7255

    Article  CAS  Google Scholar 

  23. Sedlák M (2001) Structure and dynamics of polyelectrolyte solutions by light scattering. In: Radeva T (ed) Physical chemistry of polyelectrolytes, surfactant science series, vol 99. Marcel Dekker, Inc, New York, pp 1–58

    Google Scholar 

  24. Ise N, Okubo T, Yamamoto K, Kawai H, Hashimoto T, Fujimura M, Hiragi Y (1980) Ordered structure in dilute solutions of ionic biopolymers. 2. Small-angle X-ray scattering study of sodium polyacrylate solution. J Am Chem Soc 102(27):7901–7906

    Article  CAS  Google Scholar 

  25. Muroga Y, Noda I, Nagasawa M (1985) Investigation of local conformations of polyelectrolytes in aqueous solution by small-angle X-ray scattering. 1. Local conformations of poly(sodium acrylates). Macromolecules 18(8):1576–1579

    Article  CAS  Google Scholar 

  26. Saito T, Shimada K, Kinugasa S (2004) Determination of the size of a polystyrene nanosphere by the pulsed field gradient nuclear magnetic resonance method. Langmuir 20(11):4779–4781

    Article  CAS  Google Scholar 

  27. Kestin J, Khalifa H, Correia R (1981) Tables of the dynamic and kinematic viscosity of aqueous NaCl solutions. J Phys Chem Ref Data 10(1):71–87

    Article  CAS  Google Scholar 

  28. Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New York

    Book  Google Scholar 

  29. Cosgrove T, Griffiths P (1994) The critical overlap concentration measured by pulsed-field gradient nuclear-magnetic-resonance techniques. Polymer 35(3):509–513

    Article  CAS  Google Scholar 

  30. Majer G, Zick K (2015) Accurate and absolute diffusion measurements of Rhodamine 6G in low-concentration aqueous solutions by the PGSE-WATERGATE sequence. J Chem Phys 142(16):164,202

    Article  CAS  Google Scholar 

  31. Price WS (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part 1. Basic theory. Concepts Magn Reson 9(5):299–336

    Article  CAS  Google Scholar 

  32. Wu DH, Chen AD, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson, Ser A 115(2):260–264

    Article  CAS  Google Scholar 

  33. Holz M, Heil SR, Sacco A (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2(20):4740–4742

    Article  CAS  Google Scholar 

  34. Holz M, Weingartner H (1991) Calibration in accurate spin-echo self-diffusion measurements using H-1 and less-common nuclei. J Magn Reson 92(1):115–125

    CAS  Google Scholar 

  35. Stepto RFT (2009) Dispersity in polymer science (IUPAC Recommendations 2009). Pure Appl Chem 81(2):351–353

    Article  Google Scholar 

  36. Callaghan PT, Lelievre J (1985) The size and shape of amylopectin: a study using pulsed-field gradient nuclear magnetic resonance. Biopolymers 24(3):441–460

    Article  CAS  Google Scholar 

  37. Håkansson B, Nydén M, Söderman O (2000) The influence of polymer molecular-weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion experiments. Colloid Polym Sci 278(5):399–405

    Article  Google Scholar 

  38. Oostwal MG, Blees MH, De Bleijser J, Leyte JC (1993) Chain self-diffusion in aqueous salt-free solutions of sodium poly(styrenesulfonate). Macromolecules 26(26):7300–7308

    Article  CAS  Google Scholar 

  39. Roding M, Bernin D, Jonasson J, Sarkka A, Topgaard D, Rudemo M, Nyden M (2012) The gamma distribution model for pulsed-field gradient NMR studies of molecular-weight distributions of polymers. J Magn Reson 222:105–111

    Article  Google Scholar 

  40. Borkovec M, Jönsson B, Koper GJM (2001) Ionization processes and proton binding in polyprotic systems: small molecules, proteins, interfaces, and polyelectrolytes. In: Matijević E (ed) Surface and colloid science, vol 16. Springer, US, Boston, MA, pp 99–339

    Chapter  Google Scholar 

  41. Sadeghpour A, Vaccaro A, Rentsch S, Borkovec M (2009) Influence of alkali metal counterions on the charging behavior of poly(acrylic acid). Polymer 50(16):3950–3954

    Article  CAS  Google Scholar 

  42. Henderson LJ (1908) Concerning the relationship between the strength of acids and their capacity to preserve neutrality. Am J Physiol 21(2):173–179

    CAS  Google Scholar 

  43. Hasselbalch KA (1916) Die Berechnung der Wasserstoffzahl des blutes auf der freien und gebundenen Kohlensaure desselben, und die Sauerstoffbindung des Blutes als Funktion des Wasserstoffzahl. Biochem Z 78:112–144

    CAS  Google Scholar 

  44. Annenkov VV, Kruglova VA, Mazyar NL (1998) Analysis of the potentiometric titration curves within the framework of the theory of the “neighbor effect”. J Polym Sci Part B Polym Phys 36(6):931–936

    Article  CAS  Google Scholar 

  45. Carnal F, Ulrich S, Stoll S (2010) Influence of explicit ions on titration curves and conformations of flexible polyelectrolytes: a Monte Carlo study. Macromolecules 43(5):2544–2553

    Article  CAS  Google Scholar 

  46. Ullner M, Jönsson B, Söderberg B, Peterson C (1996) A Monte Carlo study of titrating polyelectrolytes. J Chem Phys 104(8):3048–3057

    Article  CAS  Google Scholar 

  47. Ullner M, Jönsson B, Widmark PO (1994) Conformational properties and apparent dissociation constants of titrating polyelectrolytes: Monte Carlo simulation and scaling arguments. J Chem Phys 100(4):3365

    Article  CAS  Google Scholar 

  48. Tynkkynen T, Tiainen M, Soininen P, Laatikainen R (2009) From proton nuclear magnetic resonance spectra to ph. assessment of 1H NMR pH indicator compound set for deuterium oxide solutions. Anal Chim Acta 648(1):105–12

    Article  CAS  Google Scholar 

  49. Cistola DP, Small DM, Hamilton JA (1982) Ionization behavior of aqueous short-chain carboxylic acids: a carbon-13 NMR study. J Lipid Res 23(5):795–799

    CAS  Google Scholar 

  50. Chang C, Muccio DD, St. Pierre T (1985) Determination of the tacticity and analysis of the pH titration of poly(acrylic acid) by proton and carbon-13 NMR. Macromolecules 18(11):2154–2157

    Article  CAS  Google Scholar 

  51. Buckingham A (1960) Chemical shifts in the nuclear magnetic resonance spectra of molecules containing polar groups. Can J Chem 38(2):300–307

    Article  CAS  Google Scholar 

  52. Schneider WG, Bernstein HJ, Pople JA (1958) Proton magnetic resonance chemical shift of free (gaseous) and associated (liquid) hydride molecules. J Chem Phys 28(4):601

    Article  CAS  Google Scholar 

  53. Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26(3):215–40

    Article  CAS  Google Scholar 

  54. Platzer G, Okon M, Mcintosh LP (2014) pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. J Biomol NMR 60(2-3):109–129

    Article  CAS  Google Scholar 

  55. Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51(3):924–933

  56. Reith D, Müller B, Müller-Plathe F, Wiegand S (2002) How does the chain extension of poly (acrylic acid) scale in aqueous solution? A combined study with light scattering and computer simulation. J Chem Phys 116(20):9100–9106

    Article  CAS  Google Scholar 

  57. Callaghan PT, Pinder DN (1983) A pulsed field gradient NMR study of self-diffusion in a polydisperse polymer system: dextran in water. Macromolecules 16(6):968–973

    Article  CAS  Google Scholar 

  58. Kulicke WM, Clasen C (2004) Viscosimetric determination of the molar mass. In: Viscosimetry polym. Polyelectrolytes, Springer Laboratory. Springer, Berlin, pp 69–89

    Chapter  Google Scholar 

  59. Dunn L, Stokes R (1965) The diffusion of monocarboxylic acids in aqueous solution at 25. Aust J Chem 18(3):285–296

    Article  CAS  Google Scholar 

  60. Cranford SW, Buehler MJ (2012) Variation of weak polyelectrolyte persistence length through an electrostatic contour length. Macromolecules 45(19):8067–8082

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Isabelle Correia (UPMC – Sorbonne Universités) for the NMR facilities and technical assistance and B. Ancian for fruitful discussions and UPMC for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Mériguet.

Ethics declarations

Funding

This study was funded by UPMC.

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 224 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolce, C., Mériguet, G. Ionization of short weak polyelectrolytes: when size matters. Colloid Polym Sci 295, 279–287 (2017). https://doi.org/10.1007/s00396-016-4000-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-4000-x

Keywords

Navigation