Skip to main content
Log in

Hydrodynamic and optical characteristics of hydrosols of cellulose nanocrystals

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Dynamic light scattering, viscometry, sedimentation, densitometry, refractometry, flow birefringence, and electrically induced dichroism were used in the studies of hydrosols of cellulose nanocrystals (CNC). Visualization of CNC particles and primary evaluation of their size were performed with the use of atomic force microscopy (AFM). The set of data on hydrodynamic and optical properties of the studied particles in aqueous medium was obtained. The particle size distribution demonstrates wide polydispersity. The values of translational and rotational friction coefficients, intrinsic viscosity, and quantitative data on sedimentation, density, and flow birefringence of CNC sols were obtained. Contributions of particles of various sizes into the phenomena caused by translational and rotational friction of CNC samples were analyzed in detail. It was established that hydrodynamic and optical properties of CNC hydrosols can be described using the model of ellipsoid of revolution with a shape asymmetry parameter (p) equal to 20. According to the data of hydrodynamic studies, the main CNC fraction consists of particles with a length of the order of 300–400 nm. It was demonstrated that optical characteristics of CNC hydrosols are determined by the contribution of large particles (with the characteristic longitudinal size of 1500 nm and above) into flow birefringence and electric dichroism. It was found that the AFM data alone cannot provide insight into morphology of CNC hydrosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57. doi:10.1016/j.ijbiomac.2010.09.013

    Article  CAS  Google Scholar 

  2. Ioelovich M, Leykin A (2006) Formation nano-structure of microcrystalline cellulose. Cellul Chem Technol 40:313–317

    CAS  Google Scholar 

  3. Kiziltas EE, Kiziltas A, Nazari B, Gardner DJ, Bousfield DW (2016) Glycerine treated nanofibrillated cellulose composites. J Nanomaterials 2016:7851308. doi:10.1155/2016/7851308

    Google Scholar 

  4. Gindl W, Keckes J (2005) All-cellulose nanocomposite. Polym 46:10221–10225. doi:10.1016/j.polymer.2005.08.040

    Article  CAS  Google Scholar 

  5. Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428. doi:10.1016/j.memsci.2016.05.018

    Article  CAS  Google Scholar 

  6. Durán JDG, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983. doi:10.1002/jps.21249

    Article  Google Scholar 

  7. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626. doi:10.1021/bm0493685

    Article  Google Scholar 

  8. Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotech 6:322–330. doi:10.1166/jnn.2006.005

    Article  CAS  Google Scholar 

  9. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p

    Article  CAS  Google Scholar 

  10. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Europ Polym J 59:302–325. doi:10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  11. Zimm BH, Crothers DM (1962) Simplified rotating cylinder viscometer for DNA. Proc Natl Acad Sci U S A 48:905–911

    Article  CAS  Google Scholar 

  12. Frisman EV, Shchagina LV, Vorobev VI (1965) A glass rotating viscometer. Biorheology 2:189–194

    CAS  Google Scholar 

  13. Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78:1606–1619

    Article  CAS  Google Scholar 

  14. Maechtle W (1984) Characterization of dispersions using combined H2O/D2O ultracentrifuge measurements. Makromol Chem 185:1025–1039

    Article  CAS  Google Scholar 

  15. Tsvetkov VN (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution. Plenum Press, New York

    Google Scholar 

  16. Tsvetkov VN, Andreeva LN (1981) Flow and electric birefringence in rigid-chain polymer-solutions. Adv Polym Sci 39:95–207. doi:10.1007/3-540-10218-3_3

    Article  CAS  Google Scholar 

  17. Vojtylov V, Zernova T, Spartakov A, Trusov A, Voitylov A (2002) Determination of distribution of colloidal particles on their parameters in electro-optical investigation. Colloids Surf A Physicochem Eng Asp 209:123–129. doi:10.1016/S0927-7757(02)00173-5

    Article  CAS  Google Scholar 

  18. Trusov AA, Vojtylov VV (1993) Electrooptics and conductometry of polydisperse systems. CRC Press, Boca Raton

    Google Scholar 

  19. Klemeshev VA, Voitylov AV, Klemeshev SA, Petrov MP (2014) Experiment control and data acquisition in electro-optical research. 2014 International Conference on Computer Technologies in Physical and Engineering Applications, ICCTPEA 2014 Proceedings 2014:181–182. doi: 10.1109/ICCTPEA.2014.6893348

  20. Kotelnikov VA (1933) On the carrying capacity of the ether and wire in telecommunications. In material for the first all-union conference on questions of communication. Izd. Red. Upr, Moscow

    Google Scholar 

  21. Perrin F (1936) Brownian motion of an ellipsoid. II. Free rotation and depolarisation of fluorescence: translation and diffusion of ellipsoidal molecules. J Phys Rad 7:1–11. doi:10.1051/jphysrad:01936007010100

    Article  CAS  Google Scholar 

  22. Pamies R, Hernández Cifre JG, del Carmen López Martínez M, García de la Torre J (2008) Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. Colloid Polym Sci 286:1223–1231. doi:10.1007/s00396-008-1902-2

    Article  CAS  Google Scholar 

  23. Kuhn W, Kuhn H (1945) Die Abhängigkeit der Viskosität vom Strömungsgefälle bei hochverdünnten Suspensionen und Lösungen. Helv Chim Acta 1:97–127. doi:10.1002/hlca.19450280111

    Article  Google Scholar 

  24. Kuhn W, Kuhn H, Buchner P (1951) Hydrodynamic behavior of macromolecules in solution. Ergeb Exakt Naturwiss 25:1–108

    Article  Google Scholar 

  25. Simha R (1940) The influence of brownian movement on the viscosity of solutions. J Phys Chem 44:25–34. doi:10.1021/j150397a004

    Article  CAS  Google Scholar 

  26. Simha R (1945) The influence of molecular flexibility on the intrinsic viscosity, sedimentation, and diffusion of high polymers. J Chem Phys 13:188–195. doi:10.1063/1.1724020

    Article  CAS  Google Scholar 

  27. Cummins HZ, Pike ER (eds) (1974) Photon-correlation and light-beating spectroscopy. Plenum Press, New York and London

    Google Scholar 

  28. Ortega A, García de la Torre J (2007) Equivalent radii and ratios of radii from solution properties as indicators of macromolecular conformation, shape, and flexibility. Biomacromolecules 8:2464–2475. doi:10.1021/bm700473f

    Article  CAS  Google Scholar 

  29. Tirado MM, Carmen López Martínez M, García de la Torre J (1984) Comparison of theories for the translational and rotational diffusion coefficients of rod-like macromolecules. Application to short DNA fragments. J Chem Phys 81:2047–2052. doi:10.1063/1.447827

    Article  Google Scholar 

  30. García de la Torre J, López Martínez MC, Mercedes Tirado M (1984) Dimensions of short, rodlike macromolecules from translational and rotational diffusion coefficients. Study of the gramicidin dimer. Biopolymers 23:611–615. doi:10.1002/bip.360230402

    Article  Google Scholar 

  31. Tsvetkov VN, Eskin VE, Frenkel SY (1971) Structure of macromolecules in solution. National Lending Library for Science and Technology, Boston

    Google Scholar 

  32. Tsvetkov NV, Bushin SV, Bezrukova MA, Astapenko EP, Mikusheva NG, Lebedeva EV, Podseval’nikova AN, Khripunov AK (2013) Conformational and optical properties of macromolecules of some aliphatic-substituted cellulose esters. Cellulose 20:1057–1071. doi:10.1007/s10570-013-9913-7

    Article  CAS  Google Scholar 

  33. Tvetkov VN, Andreeva LN, Tsvetkov NV (1999) Anisotropy of segments and monomer units of polymer molecules. In: Brandrup J, Immergut EH, Grulke E (eds) Polymer handbook, 4th edn. Wiley J & Sons, New York, pp. 745–763

    Google Scholar 

  34. Maxwell J (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

  35. www.photocor.ru/dynals. Accessed 25 Oct 2006

Download references

Acknowledgments

This research was supported by a grant from the Russian Science Foundation (project №16-13-10148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tsvetkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsvetkov, N.V., Lebedeva, E.V., Lezov, A.A. et al. Hydrodynamic and optical characteristics of hydrosols of cellulose nanocrystals. Colloid Polym Sci 295, 13–24 (2017). https://doi.org/10.1007/s00396-016-3975-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3975-7

Keywords

Navigation