Skip to main content
Log in

Bound rubber morphology and loss tangent properties of carbon-black-filled rubber compounds

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The bound rubber phenomenon of carbon-black-filled rubber compounds, which is still an intensively discussed subject, is visualized in this research as a stable nanoscale interphase. Using the novel amplitude and phase-modified atomic force microscope technique, a viscoelastic mapping mode, it becomes possible to quantify mechanical loss tangent properties that are defined as the ratio of loss modulus G″ to storage modulus G′. Imaging loss tangent enables the observation of separated energy dissipation of single constituents within a blend system as well as bound rubber dimensions. Determined with the conventional quantification of insoluble rubber, the amount of bound rubber is correlated with values from the analytical evaluation of loss tangent images. Comparing the loss tangent images and histograms to dynamic mechanical analyses allows the characterization of each single component. On the base of the time-temperature superposition principle, bound rubber dimensions and mechanical properties of filled compounds can be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Byers JT, Wagner M (1987) Fillers. Rubber Technol 188:59–104

    Article  Google Scholar 

  2. Vidal A, Donnet JB (1987) Surface properties of fillers and interactions with elastomers. Prog Colloid Polym Sci 75:201–212

    Article  Google Scholar 

  3. Vilgis TA, Heinrich G, Klüppel M (2009) Reinforcement of polymer nano-composites. Cambridge University Press

  4. Leblanc JL (2014) A multiparametric approach of the nonlinear viscoelasticity of rubber materials. Adv Polym Sci 264:273–300

    Article  CAS  Google Scholar 

  5. Kato A, Ikeda Y, Tsush R, Kokubo Y, Kojima N (2013) A new approach to visualizing the carbon black/natural rubber interaction layer in carbon black-filled natural rubber vulcanizates and to elucidating the dependence of mechanical properties on quantitative parameters. Colloid Polym Sci 291:2101–2110

    Article  CAS  Google Scholar 

  6. Kato A, Nishioka M, Sato Y, Nagano E, Yamashita R, Kimura N, Taguchi T (2014) Studies on bound rubber of CB before/after vulcanization of isoprene rubber. Rubber Chem Technol 87:471–485

    Article  CAS  Google Scholar 

  7. Rwei SP, Ku FH, Cheng KC (2002) Dispersion of carbon black in a continuous phase: electrical, rheological, and morphological studies. Colloid Polym Sci 280:1110–1115

    Article  CAS  Google Scholar 

  8. Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687

    Article  CAS  Google Scholar 

  9. Le H, Ilich S, Hamann E, Keller M, Radusch HJ (2011) Effect of curing additives on the dispersion kinetics of carbon black in rubber compounds. Rubber Chem Technol 84:415–424

    Article  CAS  Google Scholar 

  10. Paul KT, Pabi S, Chakraborty K, Nando G (2008) Nanostructured fly ash-styrene butadiene rubber hybrid nanocomposites. Polym Compos 30:1647–1656

    Article  Google Scholar 

  11. Sarkawi SS, Dierkes WK, Noordermeer JWM (2014) Effect of a silane coupling agent on the morphology of silica reinforced natural rubber. KGK 67:29–33

    CAS  Google Scholar 

  12. Rybiński P, Janowska G, Ślusarski L (2010) Influence of cryogenic modification of silica on thermal properties and flammability of cross-linked nitrile rubber. J Therm Anal Calorim 101:665–670

    Article  Google Scholar 

  13. Mélé P, Marceau S, Brown D, de Puydt Y, Albérola ND (2002) Reinforcement effects in fractal-structure-filled rubber. Polymer 43:5577–5586

    Article  Google Scholar 

  14. Kastner A (2002) Dielektrische Charakterisierung rußgefüllter Kautschuke. Dissertation, Technische Universität Darmstadt

  15. Kepas-Suwara A (2015) Loss tangent and stiffness mapping of NR/BR blends using AFM. Lecture, Tire Technology Conference

  16. Kaule T, Zhang Y, Emmerling S, Pihan S, Foerch R, Gutmann J, Butt H, Berger R, Duering U, Knoll A (2013) Nanoscale thermomechanics of wear-resilient polymeric bilayer systems. ACS Nano 7:748–759

    Article  CAS  Google Scholar 

  17. Bonaccurso E, Cappella B, Graf K (2006) Local mechanical properties of plasma treated polystyrene surface. J Phys Chem B 110:17918–17924

    Article  CAS  Google Scholar 

  18. Rabe U, Hirsekorn S, Kumar A, Geng K, Arnold W (2009) Abbildung und Messung elastischer Materialeigenschaften in polykristallinen Metallen mit hoher Ortsauflösung mittels Ultraschallkraftmikroskopie. Research Report, DGZfP

  19. Prasad M, Kopycinska M, Rabe U, Arnold W (2002) Measurements of Young’s modulus of clay minerals using atomic force acoustic microscopy. Geophys Res Lett 29:13–16

    Article  Google Scholar 

  20. Qu M, Deng F, Kalkhoran SM, Gouldstone A, Robisson A, Van Vliet KJ (2011) Nanoscale visualization and multiscale mechanical implications of bound rubber interphase in rubber-carbon black nanocomposites. Soft Matter 7:1066–1077

    Article  CAS  Google Scholar 

  21. Le H, Oßwald K, Wießner S, Das A, Stöckelhuber KW, Boldt R, Gupta G, Heinrich G, Radusch HJ (2013) Location of dispersing agent in rubber nanocomposites during mixing process. Polymer 54:7009–7021

    Article  CAS  Google Scholar 

  22. Le H, Oßwald K, Ilisch S, Radusch HJ (2011) Model for pre-estimation of filler localization in rubber blends at equilibrium state. Lecture, University Halle-Merseburg

  23. Donnet JB, Bansal RC, Wang MJ (1993) Carbon Black-Science and technology. Marcel Dekker Inc

  24. IARC (2010) Carbon black. IARC Monographs 93:43–191

    Google Scholar 

  25. Cleveland J, Anczykowski B, Schmid AE, Elings VB (1998) Energy dissipation in tapping-mode atomic force microscopy. Appl Phys Lett 72:2613–2615

    Article  CAS  Google Scholar 

  26. Garcia R, Tamayo J, San Paulo A (1999) Phase contrast and surface energy hysteresis in tapping mode scanning force microscopy. Surf Interface Anal 27:312–316

    Article  CAS  Google Scholar 

  27. Wilmanski K (2006) A few remarks on Biot’s model and linear acoustics of poroelastics saturated materials. Soil Dyn Earthq Eng 26:509–536

    Article  Google Scholar 

  28. Baddeley A, Vedel Jensen EB (2009) Stereology-sampling in three dimensions. Research Report, Ma Phys Sto

  29. Heilbronner R (2002) How to derive size distributions of particles from size distributions of sectional areas. Research Report, Department of earth sciences

  30. Bocker C, Bhattacharyya S, Höche T, Rüssel C (2009) Size distribution of BaF2 nanocrystallites in transparent glass ceramics. Acta Mater 57:5956–5963

    Article  CAS  Google Scholar 

  31. Wang MJ, Lu SX, Mahmud K (2000) Carbon-silica dual phase filler, a new generation reinforcing agent for rubber, Part VI. Time-temperature superposition of dynamic properties of carbon-silica dual phase filler-filled vulcanizates. Polym Phys 38:1240–1249

    Article  CAS  Google Scholar 

  32. Wenzel M (2005) Spannungsbildung und Relaxationsverhalten bei der Aushärtung von Epoxidharzen, Dissertation, Technische Universität Darmstadt

  33. Vogt R (2011) Untersuchung und Bestimmung der rheologischen Eigenschaften von Polyethylenschmelzen im konventionellen kHz und MHz Frequenzbereich. Dissertation, Albert-Ludwigs-Universität Freiburg

  34. Ghosh PJM, Venkatasubramanian V, Walker KA (2003) Sulfur vulcanization of natural rubber for benzothiazole accelerated formulations: from reaction mechanisms to a rational kinetic model. Rubber Chem Technol 76:592–693

    Article  CAS  Google Scholar 

  35. Wrana C (2009) Introduction to polymer physics. Polymer Testing, Lanxess

  36. Wrana C (2002) Bestimmung der Glastemperatur mittels dynamisch-mechanischer Analyse. Polymer Testing, Lanxess

  37. Wrana C, Eisele U, Kelbch S (2000) Measurement and molecular modeling of rolling resistance in tire treads. KGK 53:126–128

    CAS  Google Scholar 

  38. Kroll J, Alshuth T, Schuster R (2006) Dynamische moduli von elastomeren in ultraschall und dynamisch-mechanischer analyse. KGK 59:184–189

    CAS  Google Scholar 

  39. Eckert-Kastner S, Alshuth T (2004) Untersuchung der dynamischen hochfrequenzeigenschaften von elastomeren mit hilfe eines ultraschallspektrometers. KGK 57:423–429

    CAS  Google Scholar 

  40. Müller M, Schuster R (2000) Supramolekulare organisation in elastomermischungen und ihre mechanischen konsequenzen. DIK 6:9–11

    Google Scholar 

  41. Lan K, Jorgenson JW (2001) A hybrid of exponential and gaussian functions as a simple model of asymmetric chromatographic peaks. J Chromatogr A 915:1–13

    Article  CAS  Google Scholar 

  42. Grushka E (1972) Characterization of exponentially modified Gaussian peaks in chromatography. Anal Chem 44:1733–1738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Gabriel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabriel, D., Karbach, A., Drechsler, D. et al. Bound rubber morphology and loss tangent properties of carbon-black-filled rubber compounds. Colloid Polym Sci 294, 501–511 (2016). https://doi.org/10.1007/s00396-015-3802-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3802-6

Keywords

Navigation