Skip to main content
Log in

Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polystyrene (PS) colloid particles in presence of non-ionic surfactant-modified clay particles were prepared by the free-radical polymerization of styrene monomers in emulsion. Three different types of non-ionic surfactants, sorbitan monopalmitate (Span®40), polyethylene glycol octadecyl ether (Brij®S10), and polyoxyethylene (9) nonylphenylether (Igepal®Co-630) were used for the preparation of surfactant-modified clay. High-resolution transmission electron microscopy studies showed that few colloid PS particles with clay mineral layers at the surface were obtained; the particle sizes were observed to be in the micrometer size range, and stable dispersions were obtained when Span®40 and Igepal®Co-630 modified clay minerals were used as stabilizers. The clay mineral particles were observed to be mostly encapsulated by PS latex particles, and a typical morphology was observed when Brij®S10-modified clay was used as a stabilizer. This strategy can be applied to develop stable polymer latex particles via emulsion polymerization.

The formation of stable polystyrene colloidal particles using non-ionic surfactant modified clay mineral

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Anderson C, Daniels E (2003) Emulsion polymerization and latex applications. Rap Rev Rep 14:1–156

    Google Scholar 

  2. Asua JM (2004) Emulsion polymerization: from fundamental mechanisms to process developments. J Polym Sci Part A Polym Chem 42:1025–1041

    Article  CAS  Google Scholar 

  3. Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486

    Article  CAS  Google Scholar 

  4. Asua J (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346

    Article  CAS  Google Scholar 

  5. Schork F, Luo Y, Smulders W, Russum J, Butte A, Fontenot K (2005) Miniemulsion polymerization. Adv Polym Sci 175:129–255

    Article  CAS  Google Scholar 

  6. Kawaguchi S, Ito K (2005) Dispersion polymerization. Adv Polym Sci 175:299–328

    Article  CAS  Google Scholar 

  7. Saenz JM, Asua JM (1996) Dispersion polymerization of styrene and butylacrylate in polar solvents. J Polym Sci Part A Polym Chem 34:1977–1992

    Article  CAS  Google Scholar 

  8. Wu Y, Zhang J, Zhao H (2008) Functional colloidal particles stabilized by layered silicate with hydrophilic face and hydrophobic polymer brushes. J Polym Sci Part A Polym Chem 47:1535–1543

    Article  CAS  Google Scholar 

  9. Davis SS, Round HP, Purewal TS (1981) J Colloid Interface Sci 80:508–511

    Article  CAS  Google Scholar 

  10. Webster AJ, Cates ME (1998) Stabilization of emulsions by trapped species. Langmuir 14:2068–2079

    Article  CAS  Google Scholar 

  11. Jhaveri S, Koylu D, Maschke D, Carter K (2007) Synthesis of polymeric core-shell particles using surface-initiated living free-radical polymerization. J Polym Sci Part A Polym Chem 45:1575–1584

    Article  CAS  Google Scholar 

  12. Abismail B, Canselier J, Wilhelm A, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6:75–83

    Article  CAS  Google Scholar 

  13. Fontenot K, Schork F (1993) Sensitivities of droplet size and stability in monomeric emulsions. J Ind Eng Chem Res 32:373–385

    Article  CAS  Google Scholar 

  14. Soma J, Papadopoulos K (1996) Ostwald ripening in sodium dodecyl sulfate-stabilized decane-in-water emulsions. J Colloid Interface Sci 181:225–231

    Article  CAS  Google Scholar 

  15. Eshuis A, Leendertse H, Thoenes D (1991) Surfactant-free emulsion polymerization of styrene using crosslinked seed particles. Colloid Polym Sci 269:1086–1089

    Article  CAS  Google Scholar 

  16. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ɛ-caprolactam. J Mater Res 8:1174–1178

    Article  CAS  Google Scholar 

  17. Bonnefond A, Paulis M, Bon S, Leiz J (2013) Surfactant-free miniemulsion polymerization of nBA/S stabilized by NaMMT: films with improved water resistance. Langmuir 29:2397–2405

    Article  CAS  Google Scholar 

  18. Negrete-Herrera N, Putaux J, Bourgeat-Lami E (2006) Synthesis of polymer/laponite nanocomposite latex particles via emulsion polymerization using silylated and cation-exchange laponite clay platelets. Prog Solid State Chem 34:121–137

    Article  CAS  Google Scholar 

  19. Greesh N, Sanderson R, Hartmann P (2012) Preparation of polystyrene-clay nanocomposites via dispersion polymerization using oligomeric styrene-montmorillonite as stabilizer. Polym Int 61:834–843

    Article  CAS  Google Scholar 

  20. Voorn D, Ming W, Herk AV (2006) Polymer-clay nanocomposite latex particles by inverse Pickering emulsion polymerization stabilized with hydrophobic montmorillonite platelets. Macromolecules 39:2137–2143

    Article  CAS  Google Scholar 

  21. Yang Y, Liu L, Zhang J, Li C, Zhao H (2007) PMMA colloid particles stabilized by layered silicate with PMMA-b-PDMAEMA block copolymer brushes. Langumir 23:2867–2873

    Article  CAS  Google Scholar 

  22. Pickering SU (1907) Pickering emulsion. J Chem Soc Trans 91:2001–2021

    Article  Google Scholar 

  23. Cauvin S, Colver P, Bon F (2005) Pickering stabilized miniemulsion polymerization: preparation of clay armored latexes. Macromolecules 38:7887–7889

    Article  CAS  Google Scholar 

  24. Binks BP (2002) Particles as surfactants similarities and differences. Curr Opin Colloid Interface Sci 7:21–41

    Article  CAS  Google Scholar 

  25. Guillota S, Bergayaa F, Azevedoa C, Warmonta F, Tranchant J (2009) Internally structured Pickering emulsions stabilized by clay mineral particles. J Colloid Interface Sci 333:563–569

    Article  CAS  Google Scholar 

  26. Bon S, Colver P (2007) Pickering miniemulsion polymerization using laponite clay as a stabilizer. Langumir 23:8316–8322

    Article  CAS  Google Scholar 

  27. Yang Y, Liu L, Zhang J, Li C, Zhao H (2007) PMMA colloid particles stabalization by layered silicate with PMMA-b-PDMAEMA block copolymer brushes. Langmuir 23:2867–2873

    Article  CAS  Google Scholar 

  28. Zhang J, Chen K, Zhao H (2008) PMMA colloid particles armored by clay layers with PDMAEMA polymer brushes. J Polym Sci Part A Polym Chem 46:2632–2639

    Article  CAS  Google Scholar 

  29. Putlitz B, Landfester K, Fischer H, Antonietti M (2001) The generation of armored latexes and hollow inorganic shells made of clay sheets by templating cationic miniemulsions and latexes. Adv Mater 13:500–504

    Article  Google Scholar 

  30. Samakande A, Sanderson R, Hartmann P (2008) Encapsulated clay particles in polystyrene by RAFT mediated miniemulsion polymerization. J Polym Sci Part A Polym Chem 46:7114–7126

    Article  CAS  Google Scholar 

  31. Voorn D, Ming W, Herk AV (2006) Clay platelets encapsulated inside latex particles. Macromolecules 39:4654–4656

    Article  CAS  Google Scholar 

  32. Tiarks F, Landfester K, Antonietti M (2001) Silica nanoparticles as surfactants and fillers for latexe made by miniemulsion polymerizations. Langmuir 17:5775–5780

    Article  CAS  Google Scholar 

  33. Negrete-Herrera N, Putaux L, David L, Bourgeat-Lami E (2006) Polymer/laponite composite colloids through emulsion polymerization: influence of the clay modification level on particle morphology. Macromolecules 39:9177–9184

    Article  CAS  Google Scholar 

  34. Landfester K (2001) Polyreactions in miniemulsions. Macromol Rapid Commun 22:896–936

    Article  Google Scholar 

  35. Klein, A. Daniels, E. Formulation components. In Emulsion polymerization and emulsion polymers. In Lovell, P.; El-Aasser, M., Eds. Eds. John Wiley & Sons Ltd: New York, 1997; pp 207–237

  36. Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. Phys Chem Chem Phys 1:3007–3016

    Article  CAS  Google Scholar 

  37. Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16:8622–8631

    Article  CAS  Google Scholar 

  38. Taylor P (1998) Ostwald ripening in emulsion. Adv Colloid and Interface Sci 75:107–163

    Article  CAS  Google Scholar 

  39. Welin-Berger K, Bergenstahl B (2000) Inhibition of Ostwald ripening in local anesthetic emulsions by using hydrophobic excipients in the disperse phase. Int J Pharm 200:249–260

    Article  CAS  Google Scholar 

  40. Zeeb B, Gibis M, Fischer L, Weiss J (2012) Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions. J Colloid Interface Sci 387:65–73

    Article  CAS  Google Scholar 

  41. Lin C, Wu J, Chern C (2013) Effects of the molecular weight of polymeric costabilizers on the Ostwald ripening behavior and the polymerization kinetics of styrene miniemulsions. Colloid Surf A Phys Chem Eng Asp 434:178–184

    Article  CAS  Google Scholar 

  42. Voorhees PW (1985) The theory of Ostwald ripping. J Stat Phys 38:231–252

    Article  Google Scholar 

  43. Kuehmann C, Voorhees P (1996) Ostwald ripening in ternary alloys. Metall Mater Trans A 27:937–943

    Article  Google Scholar 

  44. Greenland D (1963) The adsorption of polyvinyl alcohols by montmorillonite. J Colloid Sci 18:647–664

    Article  CAS  Google Scholar 

  45. Deng Y, Dixon JB, White GN (2006) Adsorption of polyacrylamide on smectite, illite, and kaolinite. Soil Sci Soc Amer J 70:297–304

    Article  CAS  Google Scholar 

  46. Xi Y, Martens W, He H, Frost RL. Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim 81:91–97.

  47. Tong Z, Deng Y (2008) Kinetics of miniemulsion polymerization of styrene in the presence of organoclays. Macromol Mater Eng 293:529–537

    Article  CAS  Google Scholar 

  48. Vermaa S, Kumara S, Gokhaleb R, Burgess D (2011) Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm 406:145–152

    Article  CAS  Google Scholar 

  49. Tcholakova S, Mitrinova Z, Golemanov K, Denkov N, Vethamuthu M, Ananthapadmanabhan K (2011) Control of Ostwald ripening by using surfactants with high surface modulus. Langmuir 27:14807–14819

    Article  CAS  Google Scholar 

  50. Takahara K, Ikeda S, Ishino S, Tachi K, Ikeue K, Sakata T, Hasegawa T, Mori H, Matsurmura M, Ohtani B (2005) Asymmetrically modified silica particles: a simple particulate surfactant for stabilization of oil droplets in water. J Amer Chem Soc 127:6271–6281

    Article  CAS  Google Scholar 

  51. Tong Z, Deng Y (2007) Synthesis of polystyrene encapsulated nanosaponite composite latex via miniemulsion polymerization. Polymer 48:4337–4343

    Article  CAS  Google Scholar 

  52. Herrera NN, Letoffe JM, Putaux JL, David L, Lami EB (2004) Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 20:1564–1571

    Article  CAS  Google Scholar 

  53. Huang X, Brittain WJ (2001) Synthesis and characterization of PMMA nanocomposites by suspension and emulsion polymerization. Macromolecules 34:3255–3260

    Article  CAS  Google Scholar 

  54. Bouanani F, Bendedouch D, Hemeryb P, Bounaceur B (2008) Encapsulation of montmorillonite in nanoparticles by miniemulsion polymerization. Colloid Surf A Phys Chem Eng Asp 317:751–755

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the CSIR, DST, and NRF, South Africa, for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

This section summarizes the physical properties of EFD clay and discussion on emulsion polymerization in presence of pure surfactants.(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greesh, N., Ray, S.S. Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex. Colloid Polym Sci 294, 157–170 (2016). https://doi.org/10.1007/s00396-015-3743-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3743-0

Keywords

Navigation