Skip to main content
Log in

Effect of surface treatment on the photovoltaic properties of titania nanorods and MEHPPV nanocomposites

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, anatase titanium dioxide (TiO2) nanorods (NRs) were synthesized by low-temperature hydrolysis of titanium tetraisopropoxide (TTIP) and using oleic acid (OA) as capping agent. The OA-capped titania NRs were then processed using surface ligand exchange by pyridine (Py). The two types of NRs, with different capping agents hence obtained, were blended with poly[2-methoxy-5-(2′-ethyl-hexyloxy)-l,4-phenylene vinylene] (MEHPPV) to prepare hybrid organic–inorganic nanocomposites. In order to elucidate the changes caused by the surface modifications, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction were used to study the morphology. The Fourier transform infrared spectroscopy (FTIR) analysis confirms that the ligands coordinated with the Ti center of TiO2 NRs. The optical properties of the modified TiO2 NRs are characterized by UV–Vis absorption spectra and photoluminescence (PL) spectra. Photoluminescence lifetime studies were conducted to predict the capping agent more suitable for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Boucle J, Ravirajan P, Nelson J (2007) J Mater Chem 17:3141

    Article  CAS  Google Scholar 

  2. Petrella A, Tamborra M, Curri ML, Cosma P, Striccoli M, Cozzoli PD, Agostiano A (2005) J Phys Chem 109:1554

    Article  CAS  Google Scholar 

  3. Greenham NC, Peng X, Alivisatos AP (1996) Phys Rev B 54:17628

    Article  CAS  Google Scholar 

  4. Nelson J (2002) Curr Opin Solid State Mater Sci 6:87

    Article  CAS  Google Scholar 

  5. Li Y, Hou YB, Jin H, Shi QM, Wang Y, Feng ZH (2008) Chin Sci Bull 53:2743

    Article  CAS  Google Scholar 

  6. Fan Q, McQuillin B, Bradley DDC, Whitelegg S, Seddon (2000) Chem Phys Lett B 325

  7. Wang H, Oey CC, Djurišić AB, Xie MH, Leung YH, Man KKY, Chan WK, Pandey A, Nunzi J-M, Chui PC (2005) Appl Phys Lett 87:0235071

    Google Scholar 

  8. Oey CC, Djurišić AB, Wang H, Man KKY, Chan WK, Xie MH, Leung YH, Pandey A, Nunzi JM, Chui PC (2006) Nanotechnology 17:5387

    Article  Google Scholar 

  9. Van Hal PA, Wienk MM, Kroon JM, Verhees WJ, Sloof LH, Van Gennip WJH, Jonkheijm P, Janssen R (2003) J Adv Mater 15:1927

    Google Scholar 

  10. Coakley KM, McGehee MD (2003) Appl Phys Lett 83:3380

    Article  CAS  Google Scholar 

  11. Liu Y, Summers MA, Edder C, Fréchet JMJ, McGehee MD (2005) Adv Mater 17:2960

    Article  CAS  Google Scholar 

  12. Qiao Q, Su L, Beck J, McLeskey JT (2005) Appl Phys Lett 98:094906

    Google Scholar 

  13. Marco LD, Manca M, Giannuzzi R, Malara F, Melcarne G, Ciccarella G, Zama I, Cingolani R, Gigli G (2010) J Phys Chem C 114:4228

    Article  Google Scholar 

  14. Sharma SN, Vats T, Dhenadhayalan N, Ramamurthy P, Narula AK (2012) Sol Energy Mater Sol Cells 100:6

    Article  CAS  Google Scholar 

  15. Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539

    Article  CAS  Google Scholar 

  16. Shao F, Sun J, Gao L, Yang S, Luo J (2011) J Phys Chem C 115:1819

    Article  CAS  Google Scholar 

  17. Kalsi PS (2006) Spectroscopy of organic compounds. New Age International Pvt. Ltd, New Delhi, pp 105–184

    Google Scholar 

  18. Rohrmoser S, Baldauf J, Harley RT, Lagoudakis PG, Sapra S, Eychmüller A, Watson IM (2007) Appl Phys Lett 91:092126

    Article  Google Scholar 

  19. Geng H, Wanga M, Han S, Peng R (2010) Sol Energy Mater Sol Cells 94:547

    Article  CAS  Google Scholar 

  20. Xu J, Wang J, Mitchell M, Mukherjee P, Jeffries-EL M, Petrich JW (2007) J Am Chem Soc 129:12828

    Article  CAS  Google Scholar 

  21. Ho PKH, Kim JS, Tessler N, Friend RH (2001) J Chem Phys 115:2709

    Article  CAS  Google Scholar 

  22. Nguyen TQ, Martini IB, Liu J, Schwartz BJ (2000) J Phys Chem B 104:237

    Article  CAS  Google Scholar 

  23. Verma D, Rao AR, Dutta V (2009) Sol Energy Mater Sol Cells 93:1482

    Article  CAS  Google Scholar 

  24. Salafsky JS (1999) Phys Rev B 59:10885

    Article  CAS  Google Scholar 

  25. Lin YY, Chen CW, Chang J, Lin TY, Liu IS, Su WF (2006) Nanotechnology 17:12603

    Google Scholar 

  26. Schonherr H, Frank CW (2003) Macromolecules 36:1199

    Article  Google Scholar 

  27. Willis RL, Olson C, O’Regan B, Lutz T, Nelson J, Durrant JR (2002) J Phys Chem B 106:7605

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvi Vats.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vats, T., Kumar, S. & Jain, K. Effect of surface treatment on the photovoltaic properties of titania nanorods and MEHPPV nanocomposites. Colloid Polym Sci 292, 3025–3031 (2014). https://doi.org/10.1007/s00396-014-3356-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3356-z

Keywords

Navigation