Skip to main content
Log in

Effect of Annealing Temperature on Structural, Optical and Visible-Light Photocatalytic Properties of NiTiO3 Nanopowders

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nickel titanate (NiTiO3) nanopowders have been synthesized using the sol–gel method. The effect of annealing temperatures on the structural, optical, and visible-light photocatalytic properties of the synthesized NiTiO3 nanopowders was investigated. The nanopowders annealed at a low temperature (500–600°C) showed a mixture of NiO, anatase, rutile, and NiTiO3. The TiO2 and NiO phases decreased with increased calcination temperature and transformed to NiTiO3 phase at a temperature higher than 600°C. The particle size of the prepared samples substantially increased with increased annealing temperature. The reduction of the optical band gap from 2.46 eV to 2.31 eV corresponded to the increase in annealing temperature from 500°C to 900°C, respectively. The NiTiO3 nanopowders annealed at 500°C exhibited high efficiency in the photodegradation of congo red dye under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  2. S.C. Roy, O.K. Varghese, M. Paulose, and C.A. Grimes, ACS Nano 4, 1259 (2010).

    Article  CAS  Google Scholar 

  3. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005).

    Article  CAS  Google Scholar 

  4. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Adv. Mater. 10, 135 (1998).

    Article  Google Scholar 

  5. R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare, and K. Garadkar, J. Mater. Sci. Mater. Electron. 26, 554 (2014).

    Article  Google Scholar 

  6. S. Sato, R. Nakamura, and S. Abe, Appl. Catal. A Gen. 284, 131 (2005).

    Article  CAS  Google Scholar 

  7. S.R. Gul, M. Khan, Z. Yi, B. Wu, and U. Fawad, J. Electron. Mater. 46, 6440 (2017).

    Article  CAS  Google Scholar 

  8. T.T. Dat, P.H. Hung, D.N. Toan, D.D. Dung, C.X. Quan, and L.H. Bac, Vietnam J. Sci. Technol. 56, 119 (2018).

    Article  Google Scholar 

  9. P. Jing, W. Lan, Q. Su, M. Yu, and E. Xie, Sci. Adv. Mater. 6, 434 (2014).

    Article  CAS  Google Scholar 

  10. Z. Wang, Z. Wang, W. Yang, R. Peng, and Y. Lu, J. Power Sources 255, 404 (2014).

    Article  CAS  Google Scholar 

  11. E. Della Gaspera, M. Pujatti, M. Guglielmi, M.L. Post, and A. Martucci, Mater. Sci. Eng. B 176, 716 (2011).

    Article  CAS  Google Scholar 

  12. K. Huo, Y. Li, R. Chen, B. Gao, C. Peng, W. Zhang, L. Hu, X. Zhang, and P.K. Chu, ChemPlusChem 80, 576 (2015).

    Article  CAS  Google Scholar 

  13. K. Jaye and C. Moureen, Phys. Rev. B 93, 104404 (2016).

    Article  Google Scholar 

  14. J.-L. Wang, Y.-Q. Li, Y.-J. Byon, S.-G. Mei, and G.-L. Zhang, Powder Technol. 235, 303 (2013).

    Article  CAS  Google Scholar 

  15. S. Yuvaraj, V.D.D. Nithya, K.S. Fathima, C. Sanjeeviraja, G.K. Selvan, S. Arumugam, and R.K. Selvan, Mater. Res. Bull. 48, 1110 (2013).

    Article  CAS  Google Scholar 

  16. Y. Qu, W. Zhou, L. Jiang, and H. Fu, RSC Adv. 3, 18305 (2013).

    Article  CAS  Google Scholar 

  17. A. Srinivas, F. Boey, T. Sritharan, D.W. Kim, K.S. Hong, and S.V. Suryanarayana, Ceram. Int. 30, 1431 (2004).

    Article  CAS  Google Scholar 

  18. S. Xin, H. Jing, and C. Dong, Ind. Eng. Chem. Res. 47, 4750 (2008).

    Article  Google Scholar 

  19. M.S. Sadjadi, M. Mozaffari, M. Enhessari, and K. Zare, Superlattices Microstruct. 47, 685 (2010).

    Article  CAS  Google Scholar 

  20. K.P. Lopes, L.S. Cavalcante, A.Z. Simões, J.A. Varela, E. Longo, and E.R. Leite, J. Alloys Compd. 468, 327 (2009).

    Article  CAS  Google Scholar 

  21. M.S.S. Sadjadi, K. Zare, S. Khanahmadzadeh, and M. Enhessari, Mater. Lett. 62, 3679 (2008).

    Article  CAS  Google Scholar 

  22. T.-T. Pham, S.G. Kang, and E.W. Shin, Appl. Surf. Sci. 411, 18 (2017).

    Article  CAS  Google Scholar 

  23. N. Pugazhenthiran, K. Kaviyarasan, T. Sivasankar, A. Emeline, D. Bahnemann, R.V. Mangalaraja, and S. Anandan, Ultrason. Sonochem. 35, 342 (2017).

    Article  CAS  Google Scholar 

  24. Y. Fujioka, J. Frantti, A. Puretzky, and G. King, Inorg. Chem. 55, 9436 (2016).

    Article  CAS  Google Scholar 

  25. G. Busca, G. Ramis, J.M.G. Amores, V.S. Escribano, and P. Piaggio, J. Chem. Soc. Faraday Trans. 90, 3181 (1994).

    Article  CAS  Google Scholar 

  26. M.A. Ruiz-Preciado, A. Bulou, M. Makowska-Janusik, A. Gibaud, A. Morales-Acevedo, and A. Kassiba, CrystEngComm 18, 3229 (2016).

    Article  CAS  Google Scholar 

  27. M.A. Ruiz Preciado, A. Kassiba, A. Morales-Acevedo, and M. Makowska-Janusik, RSC Adv. 5, 17396 (2015).

    Article  CAS  Google Scholar 

  28. C. Ecjhao, E J. Chem. 9, 282 (2012).

    Article  Google Scholar 

  29. N.T. Nolan, M.K. Seery, and S.C. Pillai, J. Phys. Chem. C 113, 16151 (2009).

    Article  CAS  Google Scholar 

  30. G.R. Rossman, R.D. Shannon, and R.K. Waring, J. Solid State Chem. 39, 277 (1981).

    Article  CAS  Google Scholar 

  31. M. Llusar, E. García, M.T. García, V. Esteve, C. Gargori, and G. Monrós, J. Eur. Ceram. Soc. 35, 3721 (2015).

    Article  CAS  Google Scholar 

  32. Y.J. Lin, Y.H. Chang, W.D. Yang, and B.S. Tsai, J. Non Cryst. Solids 352, 789 (2006).

    Article  CAS  Google Scholar 

  33. X. Zhang, B. Lu, R. Li, C. Fan, Z. Liang, and P. Han, Mater. Sci. Semicond. Process. 39, 6 (2015).

    Article  Google Scholar 

  34. M.A. Ruiz-Preciado, A. Kassiba, A. Gibaud, and A. Morales-Acevedo, Mater. Sci. Semicond. Process. 37, 171 (2015).

    Article  CAS  Google Scholar 

  35. Y. Tong, J. Fu, and Z. Chen, J. Nanomater. 2016, 1 (2016).

    Google Scholar 

  36. L.H. Bac, L.T.H. Thanh, N. Van Chinh, N.T. Khoa, D. Van Thiet, T. Van Trung, and D.D. Dung, Mater. Lett. 164, 631 (2016).

    Article  CAS  Google Scholar 

  37. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Adv. Mater. 24, 229 (2012).

    Article  CAS  Google Scholar 

  38. J. Li, Y. Liu, H. Li, and C. Chen, J. Photochem. Photobiol. A Chem. 317, 151 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2015.25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luong Huu Bac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, P.P., Dat, T.T., Dung, D.D. et al. Effect of Annealing Temperature on Structural, Optical and Visible-Light Photocatalytic Properties of NiTiO3 Nanopowders. J. Electron. Mater. 47, 7301–7308 (2018). https://doi.org/10.1007/s11664-018-6668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6668-9

Keywords

Navigation