Skip to main content
Log in

Interfacial composition, thermodynamic properties and structural parameters of water-in-oil microemulsions stabilized by 1-pentanol and mixed anionic + polyoxyethylene type nonionic surfactants

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The interfacial composition \( \left( {n_a^i} \right) \), thermodynamic properties and structural parameters of the stable water/(SDS + Brij-58 or Brij-78)/1-pentanol/heptane (or decane or isopropyl myristate) have been evaluated under various physicochemical environments by the dilution method. The results showed \( n_a^i \) values increase with increasing water content (ω = [water]/[surfactant]) for all the systems, whereas reverse trend was observed for (SDS/Brij-58)/heptane-derived system. The spontaneity of the transfer process of 1-pentanol from bulk oil to the interface \( \left[ { - \Delta G_t^0} \right] \) decreases with increase in ω for all the systems. The effective binding between 1-pentanol and surfactant(s) at the interface follows the order: SDS/Brij-78/IPM < SDS/Brij-58/IPM < SDS/Brij-78/Hp(or, Dc) < SDS/Brij-58/Hp(or, Dc), which corroborates well with the degree of spontaneity of the transfer process. The Gibbs free energy change \( \left( {\Delta G_t^0} \right) \), standard enthalpy change \( \left( {\Delta H_t^0} \right) \) and standard entropy change \( \left( {\Delta S_t^0} \right) \) have been found to be dependent on ω, type of nonionic surfactant and its content (Xnonionic), oil and temperature, because of the interdependence of the partition equilibrium of Pn between bulk oil and the interface, and strong adsorption of both surfactants at the interface. Synergism in \( \Delta G_t^0 \) and \( \left[ {{{\left( { - \Delta C_P^0} \right)}_t}} \right] \) (standard specific heat change) is evidenced at equimolar composition of SDS and Brij-58 in both oils at all temperatures and advocates more favorable applications for the synthesis of nanoparticles and the modulation of enzyme activity. The radius of water pool (Rw) was very sensitive to the increment of water content and tuned up by the addition of Brijs, which followed the order with decreasing size: IPM < Dc < Hp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moulik SP, Paul BK (1998) Adv Colloid Interface Sci 78:99

    Article  CAS  Google Scholar 

  2. Paul BK, Moulik SP (1997) J Disp Sci Technol 18:301

    Article  CAS  Google Scholar 

  3. Wang M, Thomas JK, Nowak T (1977) J Am Chem Soc 99:4730

    Article  Google Scholar 

  4. Levinger NE, Swafford LA (2009) Ann Rev Phys Chem 60:385

    Article  CAS  Google Scholar 

  5. Pes MA, Aramaki K, Nakamura N, Kuneida H (1996) J Colloid Interface Sci 178:666

    Article  CAS  Google Scholar 

  6. Sottmann Y, Strey R, Chen SH (1997) J Chem Phys 106:6483

    Article  CAS  Google Scholar 

  7. Hou MJ, Shah DO (1987) Langmuir 3:1086

    Article  CAS  Google Scholar 

  8. Liu D, Ma J, Cheng H, Zhao Z (1998) Colloids Surf A 143: 59; 135: 157

  9. Paul BK, Mitra RK (2005) J Colloid Interface Sci 288:261

    Article  CAS  Google Scholar 

  10. Nazario LMM, Hatton TA, Crespo JPSG (1996) Langmuir 12:6326

    Article  CAS  Google Scholar 

  11. Chatterjee S, Mitra RK, Paul BK, Bhattacharya SC (2006) J Colloid Interface Sci 298:935

    Article  CAS  Google Scholar 

  12. Bumajdad A, Eastoe J, Griffiths P, Steytler DC, Heenan RK, Lu JR, Timmins P (1999) Langmuir 15:5271

    Article  CAS  Google Scholar 

  13. Bumajdad A, Eastoe J, Nave S, Steytler DC, Heenan RK, Grillo I (2003) Langmuir 19:2560

    Article  CAS  Google Scholar 

  14. Shome A, Roy S, Das P (2007) Langmuir 23:4130

    Article  CAS  Google Scholar 

  15. Zhang J, Han B, Liu J, Zhang X, He J, Liu Z, Jiang T, Yang G (2002) Chem Eur J 8:3879

    Article  CAS  Google Scholar 

  16. Zhang W, Qiao X, Chen J, Chen Q (2008) Mater Lett 62:1689

    Article  CAS  Google Scholar 

  17. Najjar R, Stubenrauch C (2009) J Colloid Interface Sci 331:214

    Article  CAS  Google Scholar 

  18. Magno M, Angelescu DG, Stubenrauch C (2009) Colloids Surf. A 348: 116 and references therein

  19. Abbott NL, Maykay RA (1999) Curr Opin Colloid Interface Sci 4:323

    Article  CAS  Google Scholar 

  20. Garti N (2003) Curr Opin Colloid Interface Sci 8:197

    Article  CAS  Google Scholar 

  21. Kunz W, Touraud D, Baudin P (2009) Microemulsions: Properties and Applications. In: Fanun M (ed), CRC Press (Taylor and Francis Group), USA, pp 331

  22. Lopez F, Cinelli G, Ambrosome L, Clafemmina A, Ceglie A, Palazzo G (2004) Colloids Surf A 237:49

    Article  CAS  Google Scholar 

  23. Bisal SR, Bhattacharya PK, Moulik SP (1990) J Phys Chem 94:350

    Article  Google Scholar 

  24. Mitra RK, Sinha SS, Verma PK, Pal SK (2008) J Phys Chem B 112:12946

    Article  CAS  Google Scholar 

  25. Bowcott JE, Schulman JH (1955) Z Electrochem 59:283

    CAS  Google Scholar 

  26. Birdi KS (1982) Colloid Polym Sci 260:628

    Article  CAS  Google Scholar 

  27. Kumar S, Singh S, Singh HN (1986) J Surf Sci Tech 2:85

    CAS  Google Scholar 

  28. Singh HN, Prasad CD, Kumar S (1993) J Am Oil Chem Soc 70:69

    Article  CAS  Google Scholar 

  29. Digout L, Bren K, Palepu R, Moulik SP (2001) Colloid Polym Sci 279:655

    Article  CAS  Google Scholar 

  30. Hait SK, Moulik SP (2002) Langmuir 18:6736

    Article  CAS  Google Scholar 

  31. Giustini M, Murgia S, Palazzo G (2004) Langmuir 20:7381

    Article  CAS  Google Scholar 

  32. Mohareb MM, Palepu RM, Moulik SP (2006) J Disp Sci Technol 27:1209

    Article  CAS  Google Scholar 

  33. Zheng O, Zhao J-X, Fu X-M (2006) Langmuir 22:3528

    Article  CAS  Google Scholar 

  34. Zheng O, Zhao J-X, Yan H, Gao S-K (2007) J Colloid Interface Sci 310:331

    Article  CAS  Google Scholar 

  35. Paul BK, Nandy D (2007) J Colloid Interface Sci 316:751

    Article  CAS  Google Scholar 

  36. De M, Bhattacharya SC, Panda AK, Moulik SP (2009) J Disp Sci Technol 30:1262

    Article  CAS  Google Scholar 

  37. De M, Bhattacharya SC, Moulik SP, Panda AK (2010) J Surf Deterg 13:475

    Article  CAS  Google Scholar 

  38. Mehta SK, Kaur G, Mutneja R, Bhasin KK (2009) J Colloid Interface Sci 338:542

    Article  CAS  Google Scholar 

  39. Mitra D, Chakraborty I, Bhattacharya SC, Moulik SP, Roy S, Das D, Das PK (2006) J Phys Chem B 110:11314

    Article  CAS  Google Scholar 

  40. Maiti K, Chakraborty I, Bhattacharya SC, Panda AK, Moulik SP (2007) J Phys Chem B 111:14175

    Article  CAS  Google Scholar 

  41. Wang F, Fang B, Zhang Z, Zhang S, Chen Y (2008) Fuel 87:2517

    Article  CAS  Google Scholar 

  42. Mitra RK, Paul BK, Moulik SP (2006) J Colloid Interface Sci 300:755

    Article  CAS  Google Scholar 

  43. Chai JL, Li Y, Xue XN, Lu JJ, Zhang ZM (2010) J Disp Sci Technol 31:1050

    Article  CAS  Google Scholar 

  44. Kundu K, Guin G, Paul BK (2012) J. Colloid Interface Sci. doi: http://dx.doi.org/10.1016/j.jcis.2012.06.057

  45. Wang F, Zhang Z, Li D, Yang J, Chu C, Xu L (2011) J Chem Eng Data 56:3328

    Article  CAS  Google Scholar 

  46. Gu G, Wang W, Yen H (1998) J Therm Anal 51:115

    Article  CAS  Google Scholar 

  47. Moulik SP, Digout LG, Aylward WM, Palepu R (2000) Langmuir 16:3101

    Article  CAS  Google Scholar 

  48. Fanun M (ed) (2011) Colloids in Biotechnology. CRC Press, USA, p 417

    Google Scholar 

  49. Attwood D (1994) Colloid Drug Delivery System, In: Kreuter J (ed), Marcel Dekker Inc., New York, pp 31

  50. Li Y, Chai J-L, Xue X-N, Zhang Z-M (2011) Polish J Chem 83:1809

    Google Scholar 

  51. Goloub TP, Pugh RJ (2005) J Colloid Interface Sci 291:256

    Article  CAS  Google Scholar 

  52. Goloub TP, Keizer AD (2004) Langmuir 20:9506

    Article  Google Scholar 

  53. Meier W (1997) J Phys Chem B 101:919

    Article  CAS  Google Scholar 

  54. Gao Y, Li N, Zheng L, Bai X, Yu L, Zhao X, Zhang J, Zhao M, Li Z (2007) J PhysChem B 111:2506

    CAS  Google Scholar 

  55. Patist A, Axelberd T, Shah DO (1998) J Colloid Interface Sci 208:259

    Article  CAS  Google Scholar 

  56. Eastoe J, Hetherington KJ, Sharpe D, Dong J, Heenan RK, Steytler D (1996) Langmuir 12:3876

    Article  CAS  Google Scholar 

  57. Ceglie A, Das KP, Lindman B (1987) J Colloid Interface Sci 115:115

    Article  CAS  Google Scholar 

  58. Kunieda H, Horii M, Koyama M, Sakamoto K (2001) J Colloid Interface Sci 236:78

    Article  CAS  Google Scholar 

  59. Fanun M (2009) Soft Mater 7:258

    Article  CAS  Google Scholar 

  60. Leung R, Shah DO (1987) J Colloid Interface Sci 120(320):330

    Article  Google Scholar 

  61. Jada A, Lang J, Zana R, Makhloufi R, Hirsch E, Candau SJ (1990) J Phys Chem 94:387

    Article  CAS  Google Scholar 

  62. Israelachvili JN, Mitchell DJ, Ninham BW (1976) J Chem Soc Faraday Trans 172:1525

    Google Scholar 

  63. Israelachvili JN (1992) Intermolecular and Surface Forces, Academic Press, 2nd edn. London, Chapter 17

  64. Tanford C (1972) J Phys Chem 76:3020

    Article  CAS  Google Scholar 

  65. Warr GG, Sen R, Evans DF, Trend JE (1988) J Phys Chem 92:774

    Article  CAS  Google Scholar 

  66. Dupont A, Eastoe J, Murray M, Martin L, Guittard F, Givenchy ETD (2004) Langmuir 20:9953

    Article  CAS  Google Scholar 

  67. Preu H, Zrabda A, Rost S, Kunz W, Hardy EH, Zeidler MD (1999) Phys Chem Chem Phys 1:3321

    Article  CAS  Google Scholar 

  68. Schefer J, McDaniel R, Schoenborn BP (1988) J Phys Chem 92:729

    Article  CAS  Google Scholar 

  69. Lang J, Mascolo G, Zana R, Luisi PL (1990) J Phys Chem 94:3069

    Article  CAS  Google Scholar 

  70. Evans DF, Ninham BW (1986) J Phys Chem 90:226

    Article  CAS  Google Scholar 

  71. Evans DF, Mitchell DJ, Ninham BW (1986) J Phys Chem 90:2817

    Article  CAS  Google Scholar 

  72. Mathew DS, Juang R-S (2007) Sep Purif Technol 53:199

    Article  CAS  Google Scholar 

  73. Li F, Li G-Z, Chen J-B (1998) Colloids and Surf A 145:167

    Article  CAS  Google Scholar 

  74. Xu Q, Vasudevan TV, Somasundaran P (1991) J Colloid Interface Sci 142:528

    Article  CAS  Google Scholar 

  75. Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) J Colloid Interface Sci 336:111

    Article  Google Scholar 

  76. Ghosh S, Burman AD, De GC, Das AR (2012) J Phys Chem B 115:11098

    Article  Google Scholar 

  77. Zhang Q, Gao Z, Xu F, Tai S (2012) J Colloid Interface Sci 371:73

    Article  CAS  Google Scholar 

  78. Mehta SK, Chaudhary S, Bhasin KK (2008) J Colloid Interface Sci 321:426

    Article  CAS  Google Scholar 

  79. Bauduin P, Touraud D, Kunz W (2005) Langmuir 21:8138

    Article  CAS  Google Scholar 

  80. Lumry R, Rajender S (1970) Biopolymers 9:1125

    Article  CAS  Google Scholar 

  81. Zhu DM, Feng KI, Schelly ZA (1992) J Phys Chem 96:2382

    Article  CAS  Google Scholar 

  82. Chen L-J, Lin S-Y, Huang C-C (1998) J Phys Chem B 102:4350

    Article  CAS  Google Scholar 

  83. Nagarajan R, Ruckenstein E (2000) Langmuir 16:6400

    Article  CAS  Google Scholar 

  84. Bardhan S, Paul BK, Saha S (communicated to Langmuir)

  85. Bagwe RP, Khilar KC (2000) Langmuir 16:905

    Article  CAS  Google Scholar 

  86. Biais J, Bodet JF, Clin B, Lalanne P, Roux D (1986) J Phys Chem 90:5835

    Article  CAS  Google Scholar 

  87. Lin TL, Hu Y, Lee TT (1997) Prog Colloid Polym Sci 105:268

    Article  CAS  Google Scholar 

  88. Luo M, Dai LL (2007) J Phys Condense Matter 19

  89. Schubert KV, Busse G, Strey R, Kahlweit M (1993) J Phys Chem 97:248

    Article  CAS  Google Scholar 

  90. He Y, Yang B, Cheng G, Pan H (2004) Mater Lett 58:2019

    Article  CAS  Google Scholar 

  91. Zhu W, Xu L, Ma J, Yang R, Chen Y (2009) J Colloid Interface Sci 340:119

    Article  CAS  Google Scholar 

  92. Meziani A, Touraud D, Zradba A, Pulvin S, Pezron I, Clausse M, Kunz W (1997) J Phys Chem B 101:3620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support in the form of an operating research grant to B.K.P and Senior Research Fellowship to K.K from the authority of Indian Statistical Institute, Kolkata, India are thankfully acknowledged. We express our sincere thanks to one of the reviewers for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bidyut K. Paul.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 678 kb)

Appendix

Appendix

Here, we describe the relationship used to evaluate the β parameter [the ratio of intercept (I) and slope (S)] as a function of Kd (distribution constant) or \( \Delta G_t^0 \) (free energy of transfer process of alkanol from interface to bulk oil) or \( n_a^o \) (the moles of alkanol in the bulk oil) or temperature.

$$ \beta = {{I} \left/ {S} \right.} = \frac{{ \frac{{n_a^i}}{{{n_s}}} }}{{ \frac{{n_a^o}}{{{n_o}}} }} = \frac{{n_a^i \cdot {n_o}}}{{n_a^o \cdot {n_s}}} $$
(A1)

where, \( n_a^i \) and \( n_a^o \) are the number of moles of alkanol in the oil/water interface and bulk oil phase respectively, no and ns are total number of moles of oil and surfactant.

$$ {K_d} = \frac{{I\left( {1 + S} \right)}}{{S\left( {1 + I} \right)}} $$
(A2)

where, Kd is distribution constant or the partition of alkanol between the continuous oil phase and the interface of the microemulsion droplet.

Now Eq. A1 can be rewritten as

$$ \beta = {K_d} \frac{{\left( {1 + I} \right)}}{{\left( {1 + S} \right)}} $$
(A3)

Rearranging Eq. A3, one finds

$$ \beta = {K_d}\frac{{\left( {\beta + \frac{1}{S} } \right)}}{{\left( {1 + {{1} \left/ {S} \right.}} \right)}} $$
(A4)

or,

$$ \beta = \frac{{{K_d}}}{{\left( {1 + S - {K_d}S} \right)}} $$
(A5)

or,

$$ \beta = \frac{{{K_d}}}{{\left( {1 + \frac{{n_a^o}}{{{n_o}}} - {K_d} \frac{{n_a^o}}{{{n_o}}} } \right)}} $$
(A6)

where, slope (S) is equal to \( {{{n_a^o}} \left/ {{{n_o}}} \right.} \).

Now from Eq. 8, we have,

$$ {K_d} = e \frac{{ - \Delta G_t^0}}{{RT}} $$
(A7)

Now by using Eq. A7, one can find the relation between the β parameter with \( \Delta G_t^0 \) as well as temperature,

$$ \beta = \frac{{ e^{{ \frac{{ - \Delta G_t^0}}{{RT}} }} }}{{\left( {1 + \frac{{n_a^o}}{{{n_o}}} - \frac{{n_a^o}}{{{n_o}}} {e^{{ \frac{{ - \Delta G_t^0}}{{RT}} }}}} \right)}} $$
(A8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, K., Paul, B.K. Interfacial composition, thermodynamic properties and structural parameters of water-in-oil microemulsions stabilized by 1-pentanol and mixed anionic + polyoxyethylene type nonionic surfactants. Colloid Polym Sci 291, 613–632 (2013). https://doi.org/10.1007/s00396-012-2763-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2763-2

Keywords

Navigation