Skip to main content
Log in

Magnetic nanocomposites based on cyclodextrin-containing molecular tubes and iron nanoparticles

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stabilization of metallic nanoparticles may be achieved by the formation of their adducts with polymers and/or nanotubes of various chemical composition. Here, water-soluble nanotubes based on β-cyclodextrin (β-tubes) were used for entrapping of Fe nanoparticles obtained by the reduction of iron-containing precursors ([Fe3(CO)11H][Et4N] cluster and FeSO4). Using methods of light-scattering, viscometry, and isothermal diffusion measurements, it was shown that the adducts are associated in aqueous solutions. The presence of iron nanoparticles and the shape and size of adducts were verified by transmission electron microscopy. The adducts are long (up to 600 nm and longer), translucent associates consisting of denser walls and transparent cores. The width of nanotubes is ∼150 nm and the thickness of the wall 3–25 nm. Their magnetic properties were demonstrated by electron paramagnetic resonance method. The mechanism of self-assembly of the adducts is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gubin SP, Koksharov Yu A, Khomutov Yu A, Yurkov G Yu (2005) Uspekhi khimii 74:539

    Google Scholar 

  2. Matur S, Veith M, Sivakov V, Shen H, Huch V, Hartman U, Gao HB (2002) Chem Vap Depos 8:277

    Article  Google Scholar 

  3. Suslick KS, Fang M, Hyeon T (1996) J Am Chem Soc 118:11960

    Article  CAS  Google Scholar 

  4. Prozorov T, Kataby G, Prozorov R, Gedaken A (1999) Thin Solid Films 340:189

    Article  CAS  Google Scholar 

  5. Pascal C, Pascal JL, Favier F, Moubtassim MLE, Payen C (1999) Chem Mater 11:141

    Article  CAS  Google Scholar 

  6. Haneda K, Zhou ZX, Morrish AH, Majima T, Miyahara T (1992) Phys Rev B 46:13832

    Article  CAS  Google Scholar 

  7. Okotrub AV, Kuznetsov VL, Sharaya A, Butenko Yu V, Chuvilin AL, Shubin Yu V, Varnek VA, Klein O, Pascard H (2002) Chemistry for Sustainable Development: 10:781

  8. Bose P, Bid S, Pradhan SK, Pal M, Chakravorty D (2002) J Alloys Compd 343:192

    Article  CAS  Google Scholar 

  9. Fu L, Dravid VP, Johnson DL (2001) J Appl Surf Sci 181:173

    Article  CAS  Google Scholar 

  10. Smith TW, Wychick D (1980) J Phys Chem 84:1621

    Article  CAS  Google Scholar 

  11. Gubin SP, Korobov MS, Yurkov G Yu, Tsvetnikov AK, Buznick VM (2003) Dokl Akad Nauk 388:493

  12. Gubin SP, Yurkov G Yu, Korobov MS, Koksharov Yu A, Kozinkin AV, Pirog IV, Zubkov SV, Kitaev VV, Sarichev VM, Buznick VM, Tsvetnikov AK (2005) Acta Mater 53:1407

    Article  CAS  Google Scholar 

  13. Habibullina NR, Jeglov EP, Shulyndin SV (2000) Theses of International Conference “Mossbauer effect: magnetism. Materials science: gamma-optics”, Kazan, Russia, 26 June–1 July 2000, p 155

  14. Tesla AM, Foglia S, Suber L, Fiorani D, Casas L, Roig A, Molins E, Greneche JM, Tejada J (2001) J Appl Phys 90:1534

    Article  CAS  Google Scholar 

  15. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  16. Yu DP, Sun XC, Lee CS et al (1966) Appl Phys Lett 72:1966

    Article  Google Scholar 

  17. Tenne R, Margulis L, Genut M, Hodes G (1992) Nature 360:444

    Article  CAS  Google Scholar 

  18. Harada A, Li J, Camachi M (1993) Nature 364:516

    Article  CAS  Google Scholar 

  19. Ikeda T, Ooya T, Yui N (2000) Polym Adv Technol 11:830

    Article  CAS  Google Scholar 

  20. Maarten van den Boogaard (2003) Cyclodextrin-containing supramolecular structures: from pseudopolyrotaxanes toward molecular tubes, insulated molecular wires and topological networks. University Library Groningen, Netherlands

    Google Scholar 

  21. Ikeda T, Hirota E, Ooya T, Yui N (2001) Langmuir 17:234

    Article  CAS  Google Scholar 

  22. Ikeda T, Okumura Y, Shimomura T, Ito K, Hayakawa R (2000) J Chem Phys 112(9):4321

    Article  CAS  Google Scholar 

  23. Topchieva IN, Kalashnikov Ph A, Spiridonov VV, Melnikov AB, Polushina GA, Lezov AV (2003) Dokl Akad Nauk 399(1–3):115

    Google Scholar 

  24. Zhang GL et al (1996) Appl Phys 80:579

    Article  CAS  Google Scholar 

  25. Ahmad K, Henikoff S (2002) Proc Natl Acad Sci U S A 99[Suppl 4]:16447

    Article  CAS  Google Scholar 

  26. Clarkson MJ, Wells JRE, Gibson F, Saint R, Tremethick DJ (1999) Nature 399:694

    Article  PubMed  CAS  Google Scholar 

  27. Hatch CL, Bonner WM, Moudrianakis EN (1983) Science 221:468

    Article  PubMed  CAS  Google Scholar 

  28. Geibelmann A, Clufers P, Kropfgans C, Mayer P, Piotrowski H (2005) Angew Chem Int Ed Engl 44:924

    Article  PubMed  CAS  Google Scholar 

  29. Topchieva IN, Spiridonov VV, Kataeva NA, Gubin SP, Filippov SK, Lezov AV (2004) Dokl Akad Nauk 399(1–3):219

    CAS  Google Scholar 

  30. Panova IG, Gerasimov VI, Grokhovskaya TE, Topchieva IN (1996) Dokl Akad Nauk 347:61

    CAS  Google Scholar 

  31. Zolotov Yu A (2001) The foundations of analitycal chemistry. Vysshaya Shkola, Moscow

    Google Scholar 

  32. Tsvetkov VN, Eskin VE, Frenkel S Ya (1964) Structure of macromolecules at the solutions. Nauka, Moscow

    Google Scholar 

  33. Tsvetkov VN (ed) (1989) Rigid-chain polymers: hydrodynamic and optical properties in solution (Macromolecular compounds). Consultants Bureau, New York

  34. Bakeev KN, Shu YM, Zezin AB, Kabanov VA, Lezov AV, Mel’nikov AB, Kolomiets IP, Rjumtsev EI, MacKnight WJ (1996) Macromolecules 29(4):1320

    Article  CAS  Google Scholar 

  35. Zimm B, Crothers D (1962) Proc Natl Acad Sci U S A 48(6):905

    Article  CAS  Google Scholar 

  36. Sasaki KJ, Christian CSD, Tucker EE (1989) Fluid Phase Equilib 49:281

    Article  CAS  Google Scholar 

  37. Huang Y, Li D, Li J (2004) Chem Phys Lett 389:14

    Article  CAS  Google Scholar 

  38. Bonacchi D, Caneschi A, Dorignac D et al (2004) Chem Mater 16:2016

    Article  CAS  Google Scholar 

  39. Hadjichristidis N, Pispas S, Floudas G (2003) Block copolymers: synthetic strategies, physical properties, and applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

We are grateful to V. A. Kabanov for fruitful discussions, E. I. Ryumtsev for his interest in our study, G. Yu. Yurkov for the assistance with the TEM experiments, Yu. A. Koksharov for supplying the results of EPR study of materials and fruitful discussions, G. A. Tsirlina and V. M. Ivanov for their interest and helpful discussions, and F. A. Kalashnikov for the assistance in preparing the manuscript.

This work was supported by the Russian Foundation for Basic Research (project nos. 05-03-32083, 04-03-32090, and 04-03-32750), the International Science and Technology Center (project no. 1991), and the programs of the Presidium of the RAS “Fundamental Problems of Physics and Chemistry of Nanosized Systems and Nanomaterials” and “Directed Synthesis of Inorganic Substances with Specified Properties and Design of Functional Materials on Their Basis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily Vladimirovich Spiridonov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topchieva, I.N., Spiridonov, V.V., Kataeva, N.A. et al. Magnetic nanocomposites based on cyclodextrin-containing molecular tubes and iron nanoparticles. Colloid Polym Sci 284, 795–801 (2006). https://doi.org/10.1007/s00396-005-1456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-005-1456-5

Keywords

Navigation