Skip to main content
Log in

Multifunctional nanocomposites based on polydiphenylamine-2-carboxylic acid, magnetite nanoparticles and single-walled carbon nanotubes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A one-pot synthesis method of polymer–metal–carbon nanomaterials in the interfacial process was developed. Ternary nanocomposites are single-walled carbon nanotubes (SWCNT) with immobilized magnetite nanoparticles, coated with polydiphenylamine-2-carboxylic acid (PDPAC). The chemical structure and morphology of the obtained hybrid Fe3O4/SWCNT/PDPAC nanocomposites were investigated by FTIR spectroscopy, X-ray diffraction, transmission electron microscopy and field emission (FE-SEM) scanning electron microscopy. The size of Fe3O4 nanoparticles is within the range of 2 < d < 14 nm. Multifunctional nanocomposite materials exhibit thermal, electrical and magnetic properties. Fe3O4/SWCNT/PDPAC nanocomposites were used for preparation of stable magnetic fluids in water and ethyl alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang L, Du WY, Nautiyal A, Liu Z, Zhang XY (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61(3):303–352

    Article  CAS  Google Scholar 

  2. Jiang DW, Murugadoss V, Wang Y, Lin J, Ding T, Wang ZC, Shao Q, Wang C, Liu H, Lu N (2019) Electromagnetic interference shielding polymers and nanocomposites—a review. Polym Rev 59(2):280–337

    Article  CAS  Google Scholar 

  3. Wang S, Bao H, Yang P, Chen G (2008) Immobilization of trypsin in polyaniline-coated nano-Fe3O4/carbon nanotube composite for protein digestion. Anal Chim Acta 612:182–189

    Article  CAS  Google Scholar 

  4. He Zh, Fang Y, Wang X, Pang H (2011) Microwave absorption properties of PANI/CIP/Fe3O4 composites. Synth Met 161:420–425

    Article  CAS  Google Scholar 

  5. Liu P, Huang Y, Zhang X (2014) Superparamagnetic Fe3O4 nanoparticles on graphene–polyaniline: synthesis, characterization and their excellent electromagnetic absorption properties. J Alloys Compd 596:25–31

    Article  CAS  Google Scholar 

  6. Chen T, Qiu J, Zhu K, Che Y, Zhang Y, Zhang J, Li H, Wang F, Wang Zh (2014) Enhanced electromagnetic wave absorption properties of polyaniline-coated Fe3O4/reduced grapheme oxide nanocomposites. J Mater Sci Mater Electron 25:3664–3673

    Article  CAS  Google Scholar 

  7. Yang RB, Reddy PM, Chang CJ, Chen PA, Chen JK, Chang CC (2016) Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: Role of carbon nanotube and polypyrrole content. Chem Eng J 285:497–507

    Article  CAS  Google Scholar 

  8. Ma Y, Zhou Y, Sun Y, Chen H, Xiong Z, Li X, Shen L, Liu Y (2019) Tunable magnetic properties of Fe3O4/rGO/PANI nanocomposites for enhancing microwave absorption performance. J Alloys Compd 796:120–130

    Article  CAS  Google Scholar 

  9. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2015) A promising sensing platform on ternary composite of polyaniline-Fe2O3–reduced graphene oxide for sensitive hydroquinone determination. Chem Eng J 259:594–602

    Article  CAS  Google Scholar 

  10. Lin H, Huang Q, Wang J, Jiang J, Liu F, Chen Y, Wang C, Lu D, Han S (2016) Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim Acta 191:444–451

    Article  CAS  Google Scholar 

  11. Giri S, Ghosh D, Das CK (2013) In situ synthesis of cobalt doped polyaniline modified graphene composites for high performance supercapacitor electrode materials. J Electroanal Chem 697:32–45

    Article  CAS  Google Scholar 

  12. Xiong P, Huang H, Wang X (2014) Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-perfomance supercapacitors. J Power Sources 245:937–946

    Article  CAS  Google Scholar 

  13. Zhao Ch, Jin Y, Du X, Du W (2018) In situ prepared amorphous FeCoO-polyaniline/multiwalled carbon nanotube nanohybrids as efficient oxygen evolution catalysts for rechargeable Zn-air batteries. J Power Sources 399:337–342

    Article  CAS  Google Scholar 

  14. Ren G, Li Y, Guo Z, Xiao G, Zhu Y, Dai L, Jiang L (2015) A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Res 8(11):3461–3471

    Article  CAS  Google Scholar 

  15. Liu Y, Li J, Li F, Li W, Yang H, Zhang X, Liu Y, Ma J (2016) A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J Mater Chem A 4(12):4472–4478

    Article  CAS  Google Scholar 

  16. Zhu A, Shi P, Sun S, Rui M (2019) Construction of rGO/Fe3O4/PANI nanocomposites and its corrosion resistance mechanism in waterborne acrylate-amino coating. Prog Org Coat 133:117–124

    Article  CAS  Google Scholar 

  17. Wu TM, Yen SJ, Chen EC, Chiang RK (2008) Synthesis, characterization, and properties of monodispersed magnetite coated multi-walled carbon nanotube/polypyrrole nanocomposites synthesized by in-situ chemical oxidative polymerization. J Polym Sci B Polym Phys 46:727–733

    Article  CAS  Google Scholar 

  18. Zhou H, Wang X, Yu K, Zhang Ch, Li H, Du Zh (2014) Preparation of multi-walled carbon nanotube/polyaniline/Fe3O4 composites. Integr Ferroelectr 154:159–165

    Article  CAS  Google Scholar 

  19. Lu X, Mao H, Chao D, Zhang W, Wei Y (2006) Ultrasonic synthesis of polyaniline anotubes containing Fe3O4 nanoparticles. J Solid State Chem 179:2609–2615

    Article  CAS  Google Scholar 

  20. Zhang YJ, Lin YW, Chang CC, Wu TM (2011) Conducting and magnetic behaviors of polyaniline coated multi-walled carbon nanotube composites containing monodispersed magnetite nanoparticles. Synth Met 161(11–12):937–942

    Article  CAS  Google Scholar 

  21. Ozkan SZh, Karpacheva GP, Chernavskii PA, Dzidziguri EL, Bondarenko GN, Pankina GV (2018) Hybrid materials based on poly-3-amine-7-methylamine-2-methylphenazine and magnetite nanoparticles immobilized on single-walled carbon nanotubes. Polymers 10(5):544–559

    Article  Google Scholar 

  22. Ozkan SZh, Eremeev IS, Karpacheva GP, Bondarenko GN (2013) Oxidative polymerization of N-phenylanthranilic acid in the heterophase system. Open J Polym Chem 3:63–69

    Article  CAS  Google Scholar 

  23. Ozkan SZh, Karpacheva GP, Kostev AI, Bondarenko GN (2019) Formation features of hybrid nanocomposites based on polydiphenylamine-2-carboxylic acid and single-walled carbon nanotubes. Polymers 11(7):1181–1201

    Article  Google Scholar 

  24. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  25. Dzidziguri EL (2009) Dimensional characteristics of nanopowders. Nanotechnol Russ 4:857–870

    Article  Google Scholar 

  26. Chernavskii PA, Pankina GV, Lunin VV (2011) Magnetometric methods of investigation of supported catalysts. Russ Chem Rev 80:579–604

    Article  CAS  Google Scholar 

  27. Ozkan SZh, Karpacheva GP (2018) RU patent for the invention of "Nanocomposite magnetic material and method of production said material. № 2663049 C1 from 01.08.2018 Diploma of the Russian patent in the category "100 best inventions of Russia-2018"

  28. Eremeev IS, Ozkan SZh, Karpacheva GP, Bondarenko GN (2014) Hybrid dispersed magnetic nanomaterial based on polydiphenylamine-2-carbonic acid and Fe3O4. Nanotechnol Russ 9:38–44

    Article  CAS  Google Scholar 

  29. Karpacheva GP, Ozkan SZh, Eremeev IS, Bondarenko GN, Dzidziguri EL, Chernavskii PA (2014) Synthesis of hybrid magnetic nanomaterial based on polydiphenylamine-2-carboxylic acid and Fe3O4 in the interfacial process. Eur Chem Bull 3(10–12):1001–1007

    Google Scholar 

  30. Soloveva AYu, Ioni YV, Gubin SP (2016) Synthesis of Fe3O4 nanoparticles on the surface of graphene. Mendeleev Commun 26:38–39

    Article  CAS  Google Scholar 

  31. Gubin SP, Koksharov YuA, Khomutov GB, Yurkov GYu (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    Article  CAS  Google Scholar 

  32. Eletskii AV, Knizhnik AA, Potapkin BV, Kenny JM (2015) Electrical characteristics of carbon nanotube doped composites. Uspekhi Phyzicheskikh Nauk 185:225–270

    Article  Google Scholar 

  33. Rehwald W, Kiess H, Binggeli B (1987) Frequency dependent conductivity in polymers and other disordered materials. Z Phys B Condens Matter 68:143–148

    Article  CAS  Google Scholar 

  34. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64:2456–2468

    Article  Google Scholar 

Download references

Acknowledgements

This work was done as part of TIPS RAS State Plan. This work was performed using the equipment of the Shared Research Center «Analytical center of deep oil processing and petrochemistry of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sveta Zhiraslanovna Ozkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, S.Z., Kostev, A.I. & Karpacheva, G.P. Multifunctional nanocomposites based on polydiphenylamine-2-carboxylic acid, magnetite nanoparticles and single-walled carbon nanotubes. Polym. Bull. 79, 3721–3739 (2022). https://doi.org/10.1007/s00289-021-03558-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03558-4

Keywords

Navigation