Skip to main content

Advertisement

Log in

Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoembryonic antigen-expressing colon cancer

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Dendritic cell (DC)-based cancer vaccine represents a promising immunotherapy against cancer. There has been recent evidence which have suggested that toll-like receptor (TLR) ligands may be critical for DC preparation; this was usually omitted in the past. Our study is designed to investigate if the vaccination of synergistical toll-like receptors activated DCs can induce more potent cytotoxic T Lymphocytes (CTL) responses and antitumor activity in carcinoembryonic antigen (CEA) transgenic mouse tumor models.

Methods

We involved combination of TLR3 and TLR7/8 ligands in culture protocol of DCs. The DCs’ surface molecules expression, IL-12 secretion and proliferation capacity of lymphocytes were tested. We also investigate the CTL activity against MC38-CEA colon tumor cells and the prophylactic and therapeutic effects of DC vaccination in subcutaneous mouse colon tumor models.

Results

Compared with conventionally generated DCs, we showed synergistic TLR-activated DCs exhibited higher surface molecule expression, significantly higher secretion of IL-12 and more potent proliferating capacity of lymphocytes. Synergistic TLR-activated DCs were also able to induce lymphocytes possessing the specific cytotoxicity against MC38-CEA cells in vitro. Vaccination with CEA epitope pulsed TLR-activated DCs elicited antigen-specific preventive effect on MC38-CEA tumors, but failed to cure the tumor-bearing mice, that may be due to the suboptimal epitope selected and host immunosuppression.

Conclusions

Our results have proved that combined activation of TLRs can lead to better maturation status of DCs and also induce more effective antitumor immune responses against colon cancer, suggesting this may be a potential strategy to develop more powerful DC cancer vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296. doi:10.1146/annurev.iy.09.040191.001415

    Article  PubMed  CAS  Google Scholar 

  2. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480. doi:10.1038/nm1039nm1039

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306. doi:10.1038/nri1592

    Article  PubMed  CAS  Google Scholar 

  4. Cerundolo V, Hermans IF, Salio M (2004) Dendritic cells: a journey from laboratory to clinic. Nat Immunol 5(1):7–10. doi:10.1038/ni0104-7ni0104-7

    Article  PubMed  CAS  Google Scholar 

  5. Proudfoot O, Pouniotis D, Sheng KC, Loveland BE, Pietersz GA (2007) Dendritic cell vaccination. Expert Rev Vaccines 6(4):617–633. doi:10.1586/14760584.6.4.617

    Article  PubMed  CAS  Google Scholar 

  6. Mosolits S, Ullenhag G, Mellstedt H (2005) Therapeutic vaccination in patients with gastrointestinal malignancies. A review of immunological and clinical results. Ann Oncol 16(6):847–862. doi:10.1093/annonc/mdi192

    Article  PubMed  CAS  Google Scholar 

  7. Mazzolini G, Murillo O, Atorrasagasti C, Dubrot J, Tirapu I, Rizzo M, Arina A, Alfaro C, Azpilicueta A, Berasain C, Perez-Gracia JL, Gonzalez A, Melero I (2007) Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol 13(44):5822–5831

    PubMed  CAS  Google Scholar 

  8. Adema GJ (2009) Dendritic cells from bench to bedside and back. Immunol Lett 122(2):128–130. doi:10.1016/j.imlet.2008.11.017

    Article  PubMed  CAS  Google Scholar 

  9. Sporri R, Reis e Sousa C (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6(2):163–170. doi:10.1038/ni1162

    Article  PubMed  Google Scholar 

  10. Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426. doi:10.1038/nature06175

    Article  PubMed  CAS  Google Scholar 

  11. Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117(5):1195–1203. doi:10.1172/JCI31205

    Article  PubMed  CAS  Google Scholar 

  12. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995. doi:10.1038/ni1112ni1112

    Article  PubMed  CAS  Google Scholar 

  13. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6(8):769–776. doi:10.1038/ni1223

    Article  PubMed  CAS  Google Scholar 

  14. Warger T, Osterloh P, Rechtsteiner G, Fassbender M, Heib V, Schmid B, Schmitt E, Schild H, Radsak MP (2006) Synergistic activation of dendritic cells by combined toll-like receptor ligation induces superior CTL responses in vivo. Blood 108(2):544–550. doi:10.1182/blood-2005-10-4015

    Article  PubMed  CAS  Google Scholar 

  15. Thompson JA, Grunert F, Zimmermann W (1991) Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal 5(5):344–366

    Article  PubMed  CAS  Google Scholar 

  16. Clarke P, Mann J, Simpson JF, Rickard-Dickson K, Primus FJ (1998) Mice transgenic for human carcinoembryonic antigen as a model for immunotherapy. Cancer Res 58(7):1469–1477

    PubMed  CAS  Google Scholar 

  17. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 176(6):1693–1702

    Article  PubMed  CAS  Google Scholar 

  18. Schmitz J, Reali E, Hodge JW, Patel A, Davis G, Schlom J, Greiner JW (2002) Identification of an interferon-gamma-inducible carcinoembryonic antigen (CEA) CD8(+) T-cell epitope, which mediates tumor killing in CEA transgenic mice. Cancer Res 62(17):5058–5064

    PubMed  CAS  Google Scholar 

  19. Eades-Perner AM, van der Putten H, Hirth A, Thompson J, Neumaier M, von Kleist S, Zimmermann W (1994) Mice transgenic for the human carcinoembryonic antigen gene maintain its spatiotemporal expression pattern. Cancer Res 54(15):4169–4176

    PubMed  CAS  Google Scholar 

  20. Muders M, Ghoreschi K, Suckfuell M, Zimmermann W, Enders G (2003) Studies on the immunogenicity of hCEA in a transgenic mouse model. Int J Colorectal Dis 18(2):153–159. doi:10.1007/s00384-002-0421-8

    PubMed  CAS  Google Scholar 

  21. Hasegawa T, Isobe K, Tsuchiya Y, Oikawa S, Nakazato H, Ikezawa H, Nakashima I, Shimokata K (1991) Establishment and characterisation of human carcinoembryonic antigen transgenic mice. Br J Cancer 64(4):710–714

    Article  PubMed  CAS  Google Scholar 

  22. Del Vecchio M, Bajetta E, Canova S, Lotze MT, Wesa A, Parmiani G, Anichini A (2007) Interleukin-12: biological properties and clinical application. Clin Cancer Res 13(16):4677–4685. doi:10.1158/1078-0432.CCR-07-0776

    Article  PubMed  Google Scholar 

  23. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi:10.1038/32588

    Article  PubMed  CAS  Google Scholar 

  24. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54(3):187–207. doi:10.1007/s00262-004-0560-6

    Article  PubMed  CAS  Google Scholar 

  25. Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, Naka T, Ishida K, Primus FJ, Yamaue H (2007) Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J Cancer 120(3):585–593. doi:10.1002/ijc.22298

    Article  PubMed  CAS  Google Scholar 

  26. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2(4):293–299. doi:10.1038/86297

    Article  PubMed  CAS  Google Scholar 

  27. van Duin D, Medzhitov R, Shaw AC (2006) Triggering TLR signaling in vaccination. Trends Immunol 27(1):49–55. doi:10.1016/j.it.2005.11.005

    Article  PubMed  Google Scholar 

  28. Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239(1):178–196. doi:10.1111/j.1600-065X.2010.00978.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Science and Technology Commission of Shanghai Municipality (STCSM) grant 09411960700. We are grateful to Dr. Steven A. Rosenberg and Dr. John Shively for their generous providing of the cell lines and transgenic mice. We thank Dr. Xia Qin and Dr. Lili Wu for their expert technical help.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixin Niu.

Additional information

Hong XQ and Dong TG contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, X., Dong, T., Hu, J. et al. Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoembryonic antigen-expressing colon cancer. Int J Colorectal Dis 28, 25–33 (2013). https://doi.org/10.1007/s00384-012-1530-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-012-1530-7

Keywords

Navigation