Skip to main content

Dendritic Cell-Based Cancer Immunotherapy: Achievements and Novel Concepts

  • Chapter
  • First Online:
Cancer Immunotherapy

Abstract

Dendritic cells (DCs) are the most potent professional antigen-presenting cells of the immune system. They acquire and process antigen and migrate to the lymphoid organs where they present the antigen and control the activation of B and T cells, the mediators of specific immunity. DC-based immunotherapy is explored worldwide in clinical vaccination trials with cancer patients aiming to induce or augment an antitumor immune response. The majority of clinical trials up to the present have vaccinated patients with ex vivo-generated monocyte-derived DCs, matured using cytokines and loaded with tumor antigen via peptides, protein, or lysates.

Thus far, DC-based immunotherapy has proven to be feasible, safe, and potently able to induce immunological responses, particularly if the DCs have been appropriately matured. Nevertheless, only a limited number of clinical responses have been observed. Although the evidence on clinical responses is still scarce, expectations are high because the clinical responses that are induced are often long lasting. To improve clinical responses of DC vaccination further, a number of variables are already being tested in clinical trials, including DC maturation via toll-like receptors, mRNA transfection to load antigen, and the use of naturally occurring DC subsets instead of monocyte-derived DCs. Future aspects of DC vaccination that are being explored include combination treatment to counteract tumor escape mechanisms and in vivo targeting of DCs. The full potential of DC-based immunotherapy has not yet been fully exploited, which in combination with data to date supports a promising role for DC-based immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finn OJ (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3(8):630–641

    Article  PubMed  CAS  Google Scholar 

  2. Hsu FJ et al (1996) Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med 2(1):52–58

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  4. Jiang W et al (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375(6527):151–155

    Article  PubMed  CAS  Google Scholar 

  5. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    Article  PubMed  CAS  Google Scholar 

  6. Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143(5):1283–1288

    Article  PubMed  CAS  Google Scholar 

  7. Reis e Sousa C (2004) Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 16(1):21–25

    Article  PubMed  CAS  Google Scholar 

  8. Fernandez NC et al (1999) Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 5(4):405–411

    Article  PubMed  CAS  Google Scholar 

  9. Kadowaki N et al (2000) Natural interferon alpha/beta-producing cells link innate and adaptive immunity. J Exp Med 192(2):219–226

    Article  PubMed  CAS  Google Scholar 

  10. Dzionek A et al (2000) BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165(11):6037–6046

    PubMed  CAS  Google Scholar 

  11. Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106(3):259–262

    Article  PubMed  CAS  Google Scholar 

  12. Schreibelt G et al (2010) Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy. Cancer Immunol Immunother 59(10):1573–1582

    Article  PubMed  CAS  Google Scholar 

  13. Romani N et al (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93

    Article  PubMed  CAS  Google Scholar 

  14. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5(12):1219–1226

    Article  PubMed  CAS  Google Scholar 

  15. Corcoran L et al (2003) The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J Immunol 170(10):4926–4932

    PubMed  CAS  Google Scholar 

  16. D'Amico A, Wu L (2003) The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198(2):293–303

    Article  PubMed  CAS  Google Scholar 

  17. Karsunky H et al (2003) Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 198(2):305–313

    Article  PubMed  CAS  Google Scholar 

  18. Hochrein H et al (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA 101(31):11416–11421

    Article  PubMed  CAS  Google Scholar 

  19. MacDonald KP et al (2002) Characterization of human blood dendritic cell subsets. Blood 100(13):4512–4520

    Article  PubMed  CAS  Google Scholar 

  20. Piccioli D et al (2007) Functional specialization of human circulating CD16 and CD1c myeloid dendritic-cell subsets. Blood 109(12):5371–5379

    Article  PubMed  CAS  Google Scholar 

  21. Lindstedt M, Lundberg K, Borrebaeck CA (2005) Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J Immunol 175(8):4839–4846

    PubMed  CAS  Google Scholar 

  22. Huysamen C et al (2008) CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem 283(24):16693–16701

    Article  PubMed  CAS  Google Scholar 

  23. Lou Y et al (2007) Plasmacytoid dendritic cells synergize with myeloid dendritic cells in the induction of antigen-specific antitumor immune responses. J Immunol 178(3):1534–1541

    PubMed  CAS  Google Scholar 

  24. Piccioli D et al (2009) Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation. Blood 113(18):4232–4239

    Article  PubMed  CAS  Google Scholar 

  25. Jonuleit H et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142

    Article  PubMed  CAS  Google Scholar 

  26. de Vries IJ et al (2002) Phenotypical and functional characterization of clinical grade dendritic cells. J Immunother 25(5):429–438

    Article  PubMed  Google Scholar 

  27. Banchereau J et al (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61(17):6451–6458

    PubMed  CAS  Google Scholar 

  28. Fong L et al (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98(15):8809–8814

    Article  PubMed  CAS  Google Scholar 

  29. Lesterhuis WJ et al (2008) Dendritic cell vaccines in melanoma: from promise to proof? Crit Rev Oncol Hematol 66(2):118–134

    Article  PubMed  CAS  Google Scholar 

  30. Figdor CG et al (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10(5):475–480

    Article  PubMed  CAS  Google Scholar 

  31. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305

    Article  PubMed  CAS  Google Scholar 

  32. Skoberne M, Beignon AS, Bhardwaj N (2004) Danger signals: a time and space continuum. Trends Mol Med 10(6):251–257

    Article  PubMed  CAS  Google Scholar 

  33. Thurner B et al (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190(11):1669–1678

    Article  PubMed  CAS  Google Scholar 

  34. Singh-Jasuja H et al (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30(8):2211–2215

    Article  PubMed  CAS  Google Scholar 

  35. Jonuleit H et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93(2):243–251

    Article  PubMed  CAS  Google Scholar 

  36. de Vries IJ et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9(14):5091–5100

    PubMed  Google Scholar 

  37. McIlroy D, Gregoire M (2003) Optimizing dendritic cell-based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunol Immunother 52(10):583–591

    Article  PubMed  Google Scholar 

  38. De Vries IJ et al (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63(1):12–17

    PubMed  Google Scholar 

  39. Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA 99(1):351–358

    Article  PubMed  CAS  Google Scholar 

  40. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3(12):984–993

    Article  PubMed  CAS  Google Scholar 

  41. Schuler-Thurner B et al (2002) Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 195(10):1279–1288

    Article  PubMed  CAS  Google Scholar 

  42. Schuler-Thurner B et al (2000) Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol 165(6):3492–3496

    PubMed  CAS  Google Scholar 

  43. Pulendran B et al (2004) Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol 34(1):66–73

    Article  PubMed  CAS  Google Scholar 

  44. Palucka AK et al (2006) Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J Immunother 29(5):545–557

    Article  PubMed  CAS  Google Scholar 

  45. Davis ID et al (2006) Blood dendritic cells generated with Flt3 ligand and CD40 ligand prime CD8+ T cells efficiently in cancer patients. J Immunother 29(5):499–511

    Article  PubMed  Google Scholar 

  46. Camporeale A et al (2003) Critical impact of the kinetics of dendritic cells activation on the in vivo induction of tumor-specific T lymphocytes. Cancer Res 63(13):3688–3694

    PubMed  CAS  Google Scholar 

  47. Langenkamp A et al (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1(4):311–316

    Article  PubMed  CAS  Google Scholar 

  48. Kalinski P et al (2001) Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood 97(11):3466–3469

    Article  PubMed  CAS  Google Scholar 

  49. Kaka AS et al (2008) Using dendritic cell maturation and IL-12 producing capacity as markers of function: a cautionary tale. J Immunother 31(4):359–369

    Article  PubMed  CAS  Google Scholar 

  50. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    Article  PubMed  CAS  Google Scholar 

  51. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  PubMed  CAS  Google Scholar 

  52. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    Article  PubMed  CAS  Google Scholar 

  53. Asea A et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277(17):15028–15034

    Article  PubMed  CAS  Google Scholar 

  54. Vabulas RM et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the Toll-like receptor 2/4 pathway. J Biol Chem 277(23):20847–20853

    Article  PubMed  CAS  Google Scholar 

  55. Ito T et al (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med 195(11):1507–1512

    Article  PubMed  CAS  Google Scholar 

  56. Jarrossay D et al (2001) Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur J Immunol 31(11):3388–3393

    Article  PubMed  CAS  Google Scholar 

  57. Kadowaki N et al (2001) Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 194(6):863–869

    Article  PubMed  CAS  Google Scholar 

  58. Krug A et al (2001) Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 31(10):3026–3037

    Article  PubMed  CAS  Google Scholar 

  59. Matsumoto M et al (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171(6):3154–3162

    PubMed  CAS  Google Scholar 

  60. Means TK et al (2003) The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170(10):5165–5175

    PubMed  CAS  Google Scholar 

  61. Muzio M et al (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164(11):5998–6004

    PubMed  CAS  Google Scholar 

  62. Renn CN et al (2006) TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol 177(1):298–305

    PubMed  CAS  Google Scholar 

  63. Hochrein H, O'Keeffe M (2008) Dendritic cell subsets and toll-like receptors. Handb Exp Pharmacol 183:153–179

    Article  PubMed  CAS  Google Scholar 

  64. Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8(8):594–606

    Article  PubMed  CAS  Google Scholar 

  65. Guiducci C et al (2006) Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med 203(8):1999–2008

    Article  PubMed  CAS  Google Scholar 

  66. Blander JM, Medzhitov R (2006) Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440(7085):808–812

    Article  PubMed  CAS  Google Scholar 

  67. Napolitani G et al (2005) Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 6(8):769–776

    Article  PubMed  CAS  Google Scholar 

  68. Warger T et al (2006) Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood 108(2):544–550

    Article  PubMed  CAS  Google Scholar 

  69. Boullart AC et al (2008) Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 57(11):1589–1597

    Article  PubMed  CAS  Google Scholar 

  70. Banchereau J et al (2005) Immune and clinical outcomes in patients with stage IV melanoma vaccinated with peptide-pulsed dendritic cells derived from CD34+ progenitors and activated with type I interferon. J Immunother 28(5):505–516

    Article  PubMed  CAS  Google Scholar 

  71. Mackensen A et al (2000) Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int J Cancer 86(3):385–392

    Article  PubMed  CAS  Google Scholar 

  72. Nestle FO et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4(3):328–332

    Article  PubMed  CAS  Google Scholar 

  73. Lau R et al (2001) Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 24(1):66–78

    Article  PubMed  CAS  Google Scholar 

  74. Slingluff CL Jr et al (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21(21):4016–4026

    Article  PubMed  CAS  Google Scholar 

  75. Bedrosian I et al (2003) Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 21(20):3826–3835

    Article  PubMed  CAS  Google Scholar 

  76. Butterfield LH et al (2003) Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clin Cancer Res 9(3):998–1008

    PubMed  CAS  Google Scholar 

  77. Linette GP et al (2005) Immunization using autologous dendritic cells pulsed with the melanoma-associated antigen gp100-derived G280-9 V peptide elicits CD8+ immunity. Clin Cancer Res 11(21):7692–7699

    Article  PubMed  CAS  Google Scholar 

  78. Tuettenberg A et al (2006) Induction of strong and persistent MelanA/MART-1-specific immune responses by adjuvant dendritic cell-based vaccination of stage II melanoma patients. Int J Cancer 118(10):2617–2627

    Article  PubMed  CAS  Google Scholar 

  79. Fay JW et al (2006) Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol Immunother 55(10):1209–1218

    Article  PubMed  CAS  Google Scholar 

  80. Paczesny S et al (2004) Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J Exp Med 199(11):1503–1511

    Article  PubMed  CAS  Google Scholar 

  81. Trakatelli M et al (2006) A new dendritic cell vaccine generated with interleukin-3 and interferon-beta induces CD8+ T cell responses against NA17-A2 tumor peptide in melanoma patients. Cancer Immunol Immunother 55(4):469–474

    Article  PubMed  CAS  Google Scholar 

  82. Panelli MC et al (2000) Phase 1 study in patients with metastatic melanoma of immunization with dendritic cells presenting epitopes derived from the melanoma-associated antigens MART-1 and gp100. J Immunother 23(4):487–498

    Article  PubMed  CAS  Google Scholar 

  83. Ribas A et al (2004) Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. J Immunother 27(5):354–367

    Article  PubMed  CAS  Google Scholar 

  84. Schadendorf D et al (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17(4):563–570

    Article  PubMed  CAS  Google Scholar 

  85. Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117(5):1195–1203

    Article  PubMed  CAS  Google Scholar 

  86. Chang AE et al (2002) A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 8(4):1021–1032

    PubMed  CAS  Google Scholar 

  87. O'Rourke MG et al (2003) Durable complete clinical responses in a phase I/II trial using an autologous melanoma cell/dendritic cell vaccine. Cancer Immunol Immunother 52(6):387–395

    PubMed  Google Scholar 

  88. Hersey P et al (2004) Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma. Cancer Immunol Immunother 53(2):125–134

    Article  PubMed  CAS  Google Scholar 

  89. Griffioen M et al (2004) Analysis of T-cell responses in metastatic melanoma patients vaccinated with dendritic cells pulsed with tumor lysates. Cancer Immunol Immunother 53(8):715–722

    Article  PubMed  CAS  Google Scholar 

  90. Ridolfi R et al (2006) Improved overall survival in dendritic cell vaccination-induced immunoreactive subgroup of advanced melanoma patients. J Transl Med 4:36

    Article  PubMed  Google Scholar 

  91. Smithers M et al (2003) Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunol Immunother 52(1):41–52

    PubMed  CAS  Google Scholar 

  92. Berard F et al (2000) Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192(11):1535–1544

    Article  PubMed  CAS  Google Scholar 

  93. Salcedo M et al (2006) Vaccination of melanoma patients using dendritic cells loaded with an allogeneic tumor cell lysate. Cancer Immunol Immunother 55(7):819–829

    Article  PubMed  CAS  Google Scholar 

  94. Escobar A et al (2005) Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin Exp Immunol 142(3):555–568

    PubMed  CAS  Google Scholar 

  95. Dutoit V et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135(Pt 4):1042–1054

    Article  PubMed  Google Scholar 

  96. Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418(6894):252–258

    Article  PubMed  CAS  Google Scholar 

  97. Nair SK et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235(4):540–549

    Article  PubMed  Google Scholar 

  98. Kyte JA et al (2005) Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther 12(6):579–591

    Article  PubMed  CAS  Google Scholar 

  99. Schaft N et al (2005) Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation. J Immunol 174(5):3087–3097

    PubMed  CAS  Google Scholar 

  100. Bonehill A et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172(11):6649–6657

    PubMed  CAS  Google Scholar 

  101. Laverman P et al (2006) Development of 111In-labeled tumor-associated antigen peptides for monitoring dendritic-cell-based vaccination. Nucl Med Biol 33(4):453–458

    Article  PubMed  CAS  Google Scholar 

  102. Van Tendeloo VF et al (2001) Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 98(1):49–56

    Article  PubMed  Google Scholar 

  103. Ponsaerts P et al (2002) mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation. Leukemia 16(7):1324–1330

    Article  PubMed  CAS  Google Scholar 

  104. Ueno H et al (2004) Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. J Immunol Methods 285(2):171–180

    Article  PubMed  CAS  Google Scholar 

  105. Mu LJ et al (2003) A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scand J Immunol 58(5):578–586

    Article  PubMed  CAS  Google Scholar 

  106. Kyte JA et al (2006) Phase I/II trial of melanoma therapy with dendritic cells transfected with autologous tumor-mRNA. Cancer Gene Ther 13(10):905–918

    Article  PubMed  CAS  Google Scholar 

  107. Kyte JA et al (2007) T cell responses in melanoma patients after vaccination with tumor-mRNA transfected dendritic cells. Cancer Immunol Immunother 56(5):659–675

    Article  PubMed  CAS  Google Scholar 

  108. Gong J et al (1997) Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 3(5):558–561

    Article  PubMed  CAS  Google Scholar 

  109. Nakamura M et al (2004) Antitumor effects of fusions composed of dendritic cells and fibroblasts transfected with genomic DNA from tumor cells. Cancer Immunol Immunother 53(8):690–696

    Article  PubMed  CAS  Google Scholar 

  110. Bonehill A et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16(6):1170–1180

    Article  PubMed  CAS  Google Scholar 

  111. Lesterhuis WJ et al (2004) Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann Oncol 15(suppl 4):iv145–iv151

    PubMed  Google Scholar 

  112. Dhodapkar MV et al (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193(2):233–238

    Article  PubMed  CAS  Google Scholar 

  113. Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10(3):281–287

    Article  PubMed  CAS  Google Scholar 

  114. Balch CM et al (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19(16):3622–3634

    PubMed  CAS  Google Scholar 

  115. Eggermont AM, Kirkwood JM (2004) Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer 40(12):1825–1836

    Article  PubMed  CAS  Google Scholar 

  116. Ives NJ et al (2007) Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J Clin Oncol 25(34):5426–5434

    Article  PubMed  CAS  Google Scholar 

  117. Timmerman JM et al (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99(5):1517–1526

    Article  PubMed  CAS  Google Scholar 

  118. Holtl L et al (2002) Immunotherapy of metastatic renal cell carcinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res 8(11):3369–3376

    PubMed  CAS  Google Scholar 

  119. Brossart P et al (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96(9):3102–3108

    PubMed  CAS  Google Scholar 

  120. Lin CL et al (2002) Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV-positive nasopharyngeal carcinoma. Cancer Res 62(23):6952–6958

    PubMed  CAS  Google Scholar 

  121. Stift A et al (2003) Dendritic cell-based vaccination in solid cancer. J Clin Oncol 21(1):135–142

    Article  PubMed  CAS  Google Scholar 

  122. Schott M et al (1999) Dendritic cell immuno-therapy in disseminated parathyroid carcinoma. Lancet 353(9159):1188–1189

    Article  PubMed  CAS  Google Scholar 

  123. Toungouz M et al (2001) Transient expansion of peptide-specific lymphocytes producing IFN-gamma after vaccination with dendritic cells pulsed with MAGE peptides in patients with mage-A1/A3-positive tumors. J Leukoc Biol 69(6):937–943

    PubMed  CAS  Google Scholar 

  124. Yamanaka R et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89(7):1172–1179

    Article  PubMed  CAS  Google Scholar 

  125. Geiger JD et al (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61(23):8513–8519

    PubMed  CAS  Google Scholar 

  126. Morse MA et al (1999) A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5(6):1331–1338

    PubMed  CAS  Google Scholar 

  127. de Vries IJ et al (2005) Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol 23(24):5779–5787

    Article  PubMed  CAS  Google Scholar 

  128. Coulie PG et al (2001) A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci USA 98(18):10290–10295

    Article  PubMed  CAS  Google Scholar 

  129. Lesterhuis WJ et al (2006) Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol 17(6):974–980

    Article  PubMed  CAS  Google Scholar 

  130. Britten CM et al (2008) Toward the harmonization of immune monitoring in clinical trials: quo vadis? Cancer Immunol Immunother 57(3):285–288

    Article  PubMed  CAS  Google Scholar 

  131. Aarntzen EH et al (2008) Dendritic cell vaccination and immune monitoring. Cancer Immunol Immunother 57(10):1559–1568

    Article  PubMed  CAS  Google Scholar 

  132. Lurquin C et al (2005) Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with a MAGE tumor antigen. J Exp Med 201(2):249–257

    Article  PubMed  CAS  Google Scholar 

  133. Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46(2):82–87

    Article  PubMed  CAS  Google Scholar 

  134. Nestle FO, Banchereau J, Hart D (2001) Dendritic cells: on the move from bench to bedside. Nat Med 7(7):761–765

    Article  PubMed  CAS  Google Scholar 

  135. Dhodapkar MV et al (2000) Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J Clin Invest 105(6):R9–R14

    Article  PubMed  CAS  Google Scholar 

  136. Caruso DA et al (2005) Results of a Phase I study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children with Stage 4 neuroblastoma. Cancer 103(6):1280–1291

    Article  PubMed  CAS  Google Scholar 

  137. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  PubMed  CAS  Google Scholar 

  138. Beer TM et al (2011) Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin Cancer Res 17(13):4558–4567

    Article  PubMed  CAS  Google Scholar 

  139. Small EJ et al (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094

    Article  PubMed  CAS  Google Scholar 

  140. Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422

    Article  PubMed  CAS  Google Scholar 

  141. World Health Organization (1979) WHO Handbook for Reporting Results of Cancer Treatment. WHO, Geneva

    Google Scholar 

  142. Therasse P et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer National Cancer, Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  PubMed  CAS  Google Scholar 

  143. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  PubMed  CAS  Google Scholar 

  144. Weber J (2009) Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 58(5):823–830

    Article  PubMed  CAS  Google Scholar 

  145. Wolchok JD et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

    Article  PubMed  CAS  Google Scholar 

  146. Hoos A et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397

    Article  PubMed  CAS  Google Scholar 

  147. Breckpot K et al (2005) Dendritic cells differentiated in the presence of IFN-{beta} and IL-3 are potent inducers of an antigen-specific CD8+ T cell response. J Leukoc Biol 78(4):898–908

    Article  PubMed  CAS  Google Scholar 

  148. Soruri A et al (2003) IL-4 down-regulates anaphylatoxin receptors in monocytes and dendritic cells and impairs anaphylatoxin-induced migration in vivo. J Immunol 170(6):3306–3314

    PubMed  CAS  Google Scholar 

  149. Pulendran B et al (2000) Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 165(1):566–572

    PubMed  CAS  Google Scholar 

  150. Maraskovsky E et al (2000) In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96(3):878–884

    PubMed  CAS  Google Scholar 

  151. Trinchieri G, Sher A (2007) Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 7(3):179–190

    Article  PubMed  CAS  Google Scholar 

  152. Tacken PJ et al (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7(10):790–802

    Article  PubMed  CAS  Google Scholar 

  153. Hawiger D et al (2001) Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194(6):769–779

    Article  PubMed  CAS  Google Scholar 

  154. Cruz LJ et al (2010) Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 144(2):118–126

    Article  PubMed  CAS  Google Scholar 

  155. Tacken PJ, Figdor CG (2011) Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin Immunol 23(1):12–20

    Article  PubMed  CAS  Google Scholar 

  156. Tacken PJ et al (2011) Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118(26):6836–6844

    Article  PubMed  CAS  Google Scholar 

  157. Bozzacco L et al (2007) DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci USA 104(4):1289–1294

    Article  PubMed  CAS  Google Scholar 

  158. Geijtenbeek TB et al (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5):575–585

    Article  PubMed  CAS  Google Scholar 

  159. Soilleux EJ et al (2002) Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71(3):445–457

    PubMed  CAS  Google Scholar 

  160. Tacken PJ et al (2005) Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 106(4):1278–1285

    Article  PubMed  CAS  Google Scholar 

  161. Kato M et al (2006) Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol 18(6):857–869

    Article  PubMed  CAS  Google Scholar 

  162. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53(10):844–854

    Article  PubMed  Google Scholar 

  163. Ferrone S, Marincola FM (1995) Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 16(10):487–494

    Article  PubMed  CAS  Google Scholar 

  164. Garrido F et al (1997) Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today 18(2):89–95

    Article  PubMed  CAS  Google Scholar 

  165. Seliger B, Maeurer MJ, Ferrone S (1997) TAP off–tumors on. Immunol Today 18(6):292–299

    PubMed  CAS  Google Scholar 

  166. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol 3(11):999–1005

    Article  PubMed  CAS  Google Scholar 

  167. Cabrera T et al (2007) HLA class I expression in metastatic melanoma correlates with tumor development during autologous vaccination. Cancer Immunol Immunother 56(5):709–717

    Article  PubMed  CAS  Google Scholar 

  168. Kurnick JT et al (2001) A novel autocrine pathway of tumor escape from immune recognition: melanoma cell lines produce a soluble protein that diminishes expression of the gene encoding the melanocyte lineage melan-A/MART-1 antigen through down-modulation of its promoter. J Immunol 167(3):1204–1211

    PubMed  CAS  Google Scholar 

  169. Wang S, Chen L (2004) Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes Infect 6(8):759–766

    Article  PubMed  CAS  Google Scholar 

  170. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248(4961):1349–1356

    Article  PubMed  CAS  Google Scholar 

  171. Elliott RL, Blobe GC (2005) Role of transforming growth factor Beta in human cancer. J Clin Oncol 23(9):2078–2093

    Article  PubMed  CAS  Google Scholar 

  172. Li MO et al (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  173. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11(11):S44–S51

    Article  PubMed  CAS  Google Scholar 

  174. Marie JC et al (2005) TGF-beta1 maintains suppressor function and Foxp3 expression in CD4 + CD25+ regulatory T cells. J Exp Med 201(7):1061–1067

    Article  PubMed  CAS  Google Scholar 

  175. Toi M et al (1996) Clinical significance of the determination of angiogenic factors. Eur J Cancer 32A(14):2513–2519

    Article  PubMed  CAS  Google Scholar 

  176. Mocellin S et al (2004) The multifaceted relationship between IL-10 and adaptive immunity: putting together the pieces of a puzzle. Cytokine Growth Factor Rev 15(1):61–76

    Article  PubMed  CAS  Google Scholar 

  177. Baratelli F et al (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175(3):1483–1490

    PubMed  CAS  Google Scholar 

  178. Maeda H, Shiraishi A (1996) TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 156(1):73–78

    PubMed  CAS  Google Scholar 

  179. Oyama T et al (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160(3):1224–1232

    PubMed  CAS  Google Scholar 

  180. Pockaj BA et al (2004) Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer. Ann Surg Oncol 11(3):328–339

    Article  PubMed  Google Scholar 

  181. Ling KL et al (2007) Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun 7:7

    PubMed  Google Scholar 

  182. Miller AM et al (2006) CD4 + CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405

    PubMed  CAS  Google Scholar 

  183. Fehervari Z, Sakaguchi S (2004) CD4+ Tregs and immune control. J Clin Invest 114(9):1209–1217

    PubMed  CAS  Google Scholar 

  184. Takahashi T et al (1998) Immunologic self-tolerance maintained by CD25 + CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10(12):1969–1980

    Article  PubMed  CAS  Google Scholar 

  185. Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10(9):942–949

    Article  PubMed  CAS  Google Scholar 

  186. El Andaloussi A, Lesniak MS (2007) CD4(+)CD25 (+)FoxP3 (+) T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 83(2):145–152

    Article  PubMed  CAS  Google Scholar 

  187. Petersen RP et al (2006) Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107(12):2866–2872

    Article  PubMed  Google Scholar 

  188. Wang RF (2006) Immune suppression by tumor-specific CD4+ regulatory T-cells in cancer. Semin Cancer Biol 16(1):73–79

    Article  PubMed  CAS  Google Scholar 

  189. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53–65

    Article  PubMed  CAS  Google Scholar 

  190. Kusmartsev S, Gabrilovich DI (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245

    Article  PubMed  Google Scholar 

  191. Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277

    Article  PubMed  CAS  Google Scholar 

  192. Setiadi AF et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(23):9601–9607

    Article  PubMed  CAS  Google Scholar 

  193. Gabrilovich DI et al (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3(3):483–490

    PubMed  CAS  Google Scholar 

  194. Menetrier-Caux C et al (1998) Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92(12):4778–4791

    PubMed  CAS  Google Scholar 

  195. Dummer R et al (2003) Imiquimod in basal cell carcinoma: how does it work? Br J Dermatol 149(suppl 66):57–58

    Article  PubMed  CAS  Google Scholar 

  196. Miller RL et al (1999) Imiquimod applied topically: a novel immune response modifier and new class of drug. Int J Immunopharmacol 21(1):1–14

    Article  PubMed  CAS  Google Scholar 

  197. Hofmann MA et al (2008) Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother 31(5):520–527

    Article  PubMed  CAS  Google Scholar 

  198. Gabrilovich DI et al (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5(10):2963–2970

    PubMed  CAS  Google Scholar 

  199. Li B et al (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12(22):6808–6816

    Article  PubMed  CAS  Google Scholar 

  200. Ferrari V et al (2006) Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57(2):185–190

    Article  PubMed  CAS  Google Scholar 

  201. Csiki I et al (2005) Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: a phase II trial of celecoxib and docetaxel. Clin Cancer Res 11(18):6634–6640

    Article  PubMed  CAS  Google Scholar 

  202. Sutmuller RP et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194(6):823–832

    Article  PubMed  CAS  Google Scholar 

  203. Gallimore A, Sakaguchi S (2002) Regulation of tumour immunity by CD25+ T cells. Immunology 107(1):5–9

    Article  PubMed  CAS  Google Scholar 

  204. Onizuka S et al (1999) Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor alpha) monoclonal antibody. Cancer Res 59(13):3128–3133

    PubMed  CAS  Google Scholar 

  205. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25 + CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163(10):5211–5218

    PubMed  CAS  Google Scholar 

  206. Steitz J et al (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 61(24):8643–8646

    PubMed  CAS  Google Scholar 

  207. Moore AC et al (2005) Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: increased durable cellular immunity with reduced immunodominance. J Immunol 175(11): 7264–7273

    PubMed  CAS  Google Scholar 

  208. Prasad SJ et al (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4 + CD25+ regulatory T cells. J Immunol 174(1):90–98

    PubMed  CAS  Google Scholar 

  209. Grauer OM et al (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122(8):1794–1802

    Article  PubMed  CAS  Google Scholar 

  210. Yamamoto M et al (2009) Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer. Oncol Rep 22(2):337–343

    PubMed  CAS  Google Scholar 

  211. Maes W et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11(5):529–542

    Article  PubMed  CAS  Google Scholar 

  212. Iwai Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99(19):12293–12297

    Article  PubMed  CAS  Google Scholar 

  213. Blank C et al (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64(3):1140–1145

    Article  PubMed  CAS  Google Scholar 

  214. Pedersen AE, Buus S, Claesson MH (2006) Treatment of transplanted CT26 tumour with dendritic cell vaccine in combination with blockade of vascular endothelial growth factor receptor 2 and CTLA-4. Cancer Lett 235(2):229–238

    Article  PubMed  CAS  Google Scholar 

  215. Zitvogel L et al (2010) Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 16(12):3100–3104

    Article  PubMed  CAS  Google Scholar 

  216. den Brok MH et al (2006) Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine. Cancer Res 66(14):7285–7292

    Article  Google Scholar 

  217. den Brok MH et al (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95(7):896–905

    Article  CAS  Google Scholar 

  218. Rosenberg SA et al (1994) Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 86(15):1159–1166

    Article  PubMed  CAS  Google Scholar 

  219. Varela-Rohena A et al (2008) Genetic engineering of T cells for adoptive immunotherapy. Immunol Res 42(1–3):166–181

    Article  PubMed  Google Scholar 

  220. Schattenberg AV, Dolstra H (2005) Cellular adoptive immunotherapy after allogeneic stem cell transplantation. Curr Opin Oncol 17(6):617–621

    Article  PubMed  Google Scholar 

  221. Park MY et al (2007) The optimal interval for dendritic cell vaccination following adoptive T cell transfer is important for boosting potent anti-tumor immunity. Vaccine 25(42): 7322–7330

    Article  PubMed  CAS  Google Scholar 

  222. Lou Y et al (2004) Dendritic cells strongly boost the antitumor activity of adoptively transferred T cells in vivo. Cancer Res 64(18):6783–6790

    Article  PubMed  CAS  Google Scholar 

  223. Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3(4):269–279

    Article  PubMed  CAS  Google Scholar 

  224. Van Parijs L et al (1999) Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11(3):281–288

    Article  PubMed  Google Scholar 

  225. Mocellin S et al (2004) Part I: vaccines for solid tumours. Lancet Oncol 5(11):681–689

    Article  PubMed  CAS  Google Scholar 

  226. Correale P et al (2005) 5-fluorouracil-based chemotherapy enhances the antitumor activity of a thymidylate synthase-directed polyepitopic peptide vaccine. J Natl Cancer Inst 97(19):1437–1445

    Article  PubMed  CAS  Google Scholar 

  227. van der Most RG et al (2006) Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66(2):601–604

    Article  PubMed  Google Scholar 

  228. Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    Article  PubMed  CAS  Google Scholar 

  229. Nowak AK, Robinson BW, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63(15):4490–4496

    PubMed  CAS  Google Scholar 

  230. Zitvogel L et al (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118(6):1991–2001

    Article  PubMed  CAS  Google Scholar 

  231. Bast RC Jr et al (1976) Regression of established tumors and induction of tumor immunity by intratumor chemotherapy. J Natl Cancer Inst 56(4):829–832

    PubMed  CAS  Google Scholar 

  232. Turk JL, Parker D, Poulter LW (1972) Functional aspects of the selective depletion of lymphoid tissue by cyclophosphamide. Immunology 23(4):493–501

    PubMed  CAS  Google Scholar 

  233. Lutsiak ME et al (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105(7):2862–2868

    Article  PubMed  CAS  Google Scholar 

  234. Nistico P et al (2009) Chemotherapy enhances vaccine-induced antitumor immunity in melanoma patients. Int J Cancer 124(1):130–139

    Article  PubMed  CAS  Google Scholar 

  235. Lesterhuis WJ et al (2010) A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br J Cancer 103(9):1415–1421

    Article  PubMed  CAS  Google Scholar 

  236. Maker AV, Attia P, Rosenberg SA (2005) Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol 175(11):7746–7754

    PubMed  CAS  Google Scholar 

  237. Chambers CA et al (2001) CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 19:565–594

    Article  PubMed  CAS  Google Scholar 

  238. Khan S et al (2011) Tremelimumab (anti-CTLA4) mediates immune responses mainly by direct activation of T effector cells rather than by affecting T regulatory cells. Clin Immunol 138(1):85–96

    Article  PubMed  CAS  Google Scholar 

  239. Agarwala SS, Ribas A (2010) Current experience with CTLA4-blocking monoclonal antibodies for the treatment of solid tumors. J Immunother 33(6):557–569

    Article  PubMed  CAS  Google Scholar 

  240. Ribas A et al (2005) Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 23(35):8968–8977

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Figdor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bol, K.F., Schreibelt, G., Aarntzen, E.H.J.G., de Vries, I.J.M., Figdor, C.G. (2013). Dendritic Cell-Based Cancer Immunotherapy: Achievements and Novel Concepts. In: Curiel, T. (eds) Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4732-0_4

Download citation

Publish with us

Policies and ethics