Skip to main content

Advertisement

Log in

Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Greenland Ice Sheet (GIS) might have lost a large amount of its volume during the last interglacial and may do so again in the future due to climate warming. In this study, we test whether the climate response to the glacial meltwater is sensitive to its discharging location. Two fully coupled atmosphere–ocean general circulation models, CM2G and CM2M, which have completely different ocean components are employed to do the test. In each experiment, a prescribed freshwater flux of 0.1 Sv is discharged from one of the four locations around Greenland—Petermann, 79 North, Jacobshavn and Helheim glaciers. The results from both models show that the AMOC weakens more when the freshwater is discharged from the northern GIS (Petermann and 79 North) than when it is discharged from the southern GIS (Jacobshavn and Helheim), by 15% (CM2G) and 31% (CM2M) averaged over model year 50–300 (CM2G) and 70–300 (CM2M), respectively. This is due to easier access of the freshwater from northern GIS to the deepwater formation site in the Nordic Seas. In the long term (> 300 year), however, the AMOC change is nearly the same for freshwater discharged from any location of the GIS. The East Greenland current accelerates with time and eventually becomes significantly faster when the freshwater is discharged from the north than from the south. Therefore, freshwater from the north is transported efficiently towards the south first and then circulates back to the Nordic Seas, making its impact to the deepwater formation there similar to the freshwater discharged from the south. The results indicate that the details of the location of meltwater discharge matter if the short-term (< 300 years) climate response is concerned, but may not be critical if the long-term (> 300 years) climate response is focused upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aharon P (2003) Meltwater flooding events in the Gulf of Mexico revisited: Implications for rapid climate changes during the last deglaciation Paleoceanography 18

  • Bakker P et al (2016) Fate of the Atlantic meridional overturning circulation: strong decline under continued warming and Greenland melting. Geophys Res Lett 43:2016GL070457. doi:10.1002/2016GL070457

    Google Scholar 

  • Born A, Nisancioglu KH (2012) Melting of Northern Greenland during the last interglaciation. Cryosphere 6:1239–1250. doi:10.5194/Tc-6-1239-2012

    Article  Google Scholar 

  • Cheng W, Chiang JCH, Zhang DX (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical. Simul J Clim 26:7187–7197

    Article  Google Scholar 

  • Condron A, Winsor P (2011) A subtropical fate awaited freshwater discharged from glacial Lake Agassiz. Geophys Res Lett 38:L03705. doi:10.1029/2010gl046011

    Article  Google Scholar 

  • Condron A, Winsor P (2012) Meltwater routing and the Younger Dryas. P Natl Acad Sci USA 109:19928–19933. doi:10.1073/Pnas.1207381109

    Article  Google Scholar 

  • Dickson RR, Meincke J, Malmberg SA, Lee AJ (1988) The Great Salinity Anomaly in the Northern North-Atlantic 1968–1982. Prog Oceanogr 20:103–151. doi:10.1016/0079-6611(88)90049-3

    Article  Google Scholar 

  • Dunne JP et al (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation. Char J Clim 25:6646–6665. doi:10.1175/Jcli-D-11-00560.1

    Article  Google Scholar 

  • Dunne JP et al (2013) GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation. Char J Clim 26:2247–2267

    Article  Google Scholar 

  • Frajka-Williams E et al (2016) Compensation between meridional flow components of the Atlantic MOC at 26 degrees. N Ocean Sci 12:481–493

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate. Model Nat 409:153–158. doi:10.1038/35051500

    Google Scholar 

  • Gelderloos R, Straneo F, Katsman CA (2012) Mechanisms behind the temporary shutdown of deep convection in the labrador sea: lessons from the great salinity anomaly years 1968. J Clim 25(71):6743–6755. doi:10.1175/Jcli-D-11-00549.1

    Article  Google Scholar 

  • Gerdes R, Hurlin W, Griffies SM (2006) Sensitivity of a global ocean model to increased run-off from. Greenland Ocean Model 12:416–435. doi:10.1016/J.Ocemod.2005.08.003

    Article  Google Scholar 

  • Griffies SM (2007) Elements of MOM4p1. NOAA/geophysical fluid dynamics laboratory. Princeton

    Google Scholar 

  • Hallberg R, Adcroft A (2009) Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Model 29:15–26. doi:10.1016/J.Ocemod.2009.02.008

    Article  Google Scholar 

  • Hanna E, Cropper TE, Hall RJ, Cappelen J (2016) Greenland Blocking Index 1851–2015: a regional climate change signal: Greenland Blocking Index 1851–2015. Int J Climatol. doi:10.1002/joc.4673

    Google Scholar 

  • Hu AX, Meehl GA, Han WQ, Yin JJ (2011) Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future deep-sea. Res Pt Ii 58:1914–1926. doi:10.1016/J.Dsr2.2010.10.069

    Google Scholar 

  • Hu AX, Meehl GA, Han WQ, Yin JJ, Wu BY, Kimoto M (2013) Influence of Continental Ice Retreat on Future Global. Climate J Climate 26:3087–3111 doi:Doi. 10.1175/Jcli-D-12-00102.1

    Article  Google Scholar 

  • Joughin I, Smith B, Howat IM, Scambos T, Moon T (2010a) MEaSUREs Greenland ice velocity map from InSAR data. Boulder, Colorado, USA. doi:10.5067/MEASURES/CRYOSPHERE/nsidc-0478.001

  • Joughin I, Smith BE, Howat IM, Scambos T, Moon T (2010b) Greenland flow variability from ice-sheet-wide velocity mapping. J Glaciol 56:415–430

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Esch M, Roeckner E, Marotzke J (2006) Will Greenland melting halt the thermohaline circulation? Geophys Res Lett 33:L17708. doi:10.1029/2006gl026815

    Article  Google Scholar 

  • Kageyama M, Paul A, Roche DM, Van Meerbeeck CJ (2010) Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulation: a review. Quat Sci Rev 29:2931–2956. doi:10.1016/J.Quascirev.2010.05.029

    Article  Google Scholar 

  • Khan SA et al (2014) Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat Clim Change 4:292–299. doi:10.1038/nclimate2161

    Article  Google Scholar 

  • Kleinen T, Osborn TJ, Briffa KR (2009) Sensitivity of climate response to variations in freshwater hosing location. Ocean Dyn 59:509–521. doi:10.1007/S10236-009-0189-2

    Article  Google Scholar 

  • Licciardi JM, Teller JT, Clark PU (1999) Freshwater routing by the Laurentide ice sheet during the last deglaciation. Geophys Monograph 112:177–201

    Google Scholar 

  • Liu Z et al (2009) Transient simulation of last deglaciation with a new mechanism for. Bolling-Allerod Warm Sci 325:310–314

    Google Scholar 

  • Liu JP, Chen ZQ, Francis J, Song MR, Mote T, Hu YY (2016) Has Arctic Sea ice loss contributed to increased surface melting of the greenland ice sheet? J Clim 29:3373–3386

    Article  Google Scholar 

  • Liu W, Xie S-P, Liu Z, Zhu J (2017) Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming. Clim Sci Adv 3:e1601666. doi:10.1126/sciadv.1601666

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1995) Simulation of abrupt climate-change induced by fresh-water input to the north-atlantic. Ocean Nat 378:165–167. doi:10.1038/378165a0

    Google Scholar 

  • Martin T, Adcroft A (2010) Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Model 34:111–124

    Article  Google Scholar 

  • Mouginot J et al (2015) Fast retreat of Zachariae Isstrom. Northeast Greenland Sci 350:1357–1361

    Google Scholar 

  • Quiquet A, Ritz C, Punge HJ, Salas y Mélia D (2013) Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data. Clim Past 9:353–366. doi:10.5194/cp-9-353-2013

    Article  Google Scholar 

  • Rignot E, Velicogna I, van den Broeke MR, Monaghan A, Lenaerts J (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise Geophys Res Lett 38:L05503. doi:10.1029/2011gl046583

  • Roche DM, Wiersma AP, Renssen H (2010) A systematic study of the impact of freshwater pulses with respect to different geographical locations. Clim Dyn 34:997–1013. doi:10.1007/S00382-009-0578-8

    Article  Google Scholar 

  • Rogozhina I et al (2016) Melting at the base of the Greenland ice sheet explained by Iceland hotspot history. Nat Geosci 9:366

    Article  Google Scholar 

  • Stammer D (2008) Response of the global ocean to Greenland and Antarctic ice melting. J Geophys Res-Oceans 113:C06022. doi:10.1029/2006jc004079

    Article  Google Scholar 

  • Stammer D, Agarwal N, Herrmann P, Kohl A, Mechoso CR (2011) Response of a coupled ocean–atmosphere model to greenland ice. Melting Surv Geophys 32:621–642. doi:10.1007/s10712-011-9142-2

    Article  Google Scholar 

  • Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim Past 9:621–639. doi:10.5194/cp-9-621-2013

    Article  Google Scholar 

  • Stouffer RJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387. doi:10.1175/Jcli3689.1

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33:L07711. doi:10.1029/2006gl025765

    Article  Google Scholar 

  • Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2xCO(2) stabilization experiment with land-ice melting. Clim Dyn 29:521–534. doi:10.1007/S00382-007-0250-0

    Article  Google Scholar 

  • Swingedouw D et al (2013) Decadal fingerprints of freshwater discharge around Greenland in a multi-model ensemble. Clim Dyn 41:695–720

    Article  Google Scholar 

  • Swingedouw D, Rodehacke CB, Olsen SM, Menary M, Gao YQ, Mikolajewicz U, Mignot J (2015) On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment. Clim Dyn 44:3261–3279

    Article  Google Scholar 

  • Tarasov L, Peltier WR (2005) Arctic freshwater forcing of the Younger Dryas. Cold Reversal Nat 435:662–665. doi:10.1038/Nature03617

    Google Scholar 

  • Tedesco M et al. (2016) Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nat Commun 7

  • Thiebaux HJ, Zwiers FW (1984) The interpretation and estimation of effective sample-size. J Clim Appl Meteorol 23:800–811. doi:10.1175/1520-0450(1984)023<0800:Tiaeoe>2.0.Co;2

    Article  Google Scholar 

  • Thomas MD, Treguier AM, Blanke B, Deshayes J, Voldoire A (2015) A Lagrangian method to isolate the impacts of mixed layer subduction on the meridional overturning circulation in a numerical. Model J Clim 28:7503–7517

    Article  Google Scholar 

  • Vizcaino M, Mikolajewicz U, Groger M, Maier-Reimer E, Schurgers G, Winguth AME (2008) Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex. Earth System Model Clim Dyn 31:665–690. doi:10.1007/S00382-008-0369-7

    Google Scholar 

  • Yang Q et al. (2016) Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation (vol 7, p 10525) Nat Commun 7

  • Yu L, Gao YQ, Ottera OH (2016) The sensitivity of the Atlantic meridional overturning circulation to enhanced freshwater discharge along the entire, eastern and western coast of. Greenland Clim Dyn 46:1351–1369

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the comments on the manuscript by Ron Stouffer and Rong Zhang, and the discussion with John Lazante, and Liping Zhang at GFDL and Kun Wang at Peking University. Y. Liu is supported by the National Key R&D Program of China 2017YFA0603801 and Chinese National Natural Science Foundation grant 41630527. OVS is supported by NOAA grant NA13OAR43100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Hallberg, R., Sergienko, O. et al. Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations. Clim Dyn 51, 1733–1751 (2018). https://doi.org/10.1007/s00382-017-3980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3980-7

Keywords

Navigation