Skip to main content

Advertisement

Log in

Impacts of open-ocean deep convection in the Weddell Sea on coastal and bottom water temperature

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A high resolution global ocean–sea ice model is employed to investigate the impacts of open-ocean deep convection on coastal and bottom water temperature in the Weddell Sea. The imposed strong and persistent cyclonic wind forcing and the large loss of bottom water weaken the stratification and eventually trigger the occurrence of open-ocean deep convection in the southern limb of the Weddell Gyre in this model. The production rate of the bottom water induced by the deep convection is estimated to be about 5 Sv (1 Sv = 106 m3/s) for a polynya with a similar size to that of the observed Weddell Polynya in the mid-1970s. The cooling induced by deep convection at mid-depth is transported towards the shelf regions by standing meanders or eddies to affect the basal melting of ice shelves, and is transported westward by an intensified slope current; interior coastal temperature in regions with a broader continental shelf is less affected by the deep convection, as the intensified slope current acts to suppress heat exchanges across the shelf break. Also, the deep convection causes warming in the Weddell bottom water around the convection site, when the simulated polynya size is similar to that of the observed Weddell Polynya in the mid-1970s. This finding sheds light on the observed non-monotonic decadal change (cooling between 1984–1992 and warming between 1998–2008) in the Weddell bottom water temperature. When the simulated polynya further develops into a large size across the Weddell Sea, the sustained broad deep convection causes large cooling in the bottom water in the western Weddell Sea and warming in the eastern Weddell Sea, with the bottom water temperature also being strongly modulated by a greatly intensified Weddell Gyre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akitomo K (1999) Open-ocean deep convection due to thermobaricity: 1. Scaling argument. J Geophys Res 104:5225–5234

    Article  Google Scholar 

  • Alverson K, Owens WB (1996) Topographic preconditioning of open-ocean deep convection. J Phys Oceanogr 26:2196–2213

    Article  Google Scholar 

  • Azaneu M, Kerr R, Mata MM (2014) Assessment of the representation of Antarctic Bottom Water properties in the ECCO2 reanalysis. Ocean Sci 10:923–946

    Article  Google Scholar 

  • Beckmann A, Timmermann R, Pereira AF, Mohn C (2001) The effect of flow at Maud Rise on the sea ice cover: numerical experiments. Ocean Dyn 52:11–25

    Article  Google Scholar 

  • Carsey FD (1980) Microwave observations of the Weddell Polynya. Mon Weather Rev 108:2032–2044

    Article  Google Scholar 

  • Chavanne CP, Heywood K, Nicholls K, Fer I (2010) Observations of the Antarctic slope undercurrent in the southeastern Weddell Sea. Geophys Res Lett 37:L13601. doi:10.1029/2010GL043603

    Google Scholar 

  • Cheon WG, Park YG, Toggweiler JR, Lee SK (2014) The relationship of Weddell Polynya and open-ocean deep convection to the Southern Hemisphere westerlies. J Phys Oceanogr 44:694–713

    Article  Google Scholar 

  • Comiso JC, Gordon AL (1987) Recurring polynyas over the Cosmonaut Sea and the Maud Rise. J Geophys Res 92:2819–2833

    Article  Google Scholar 

  • Cunningham SA, Alderson SG, King BA, Brandon MA (2003) Transport and variability of the Antarctic circumpolar current in Drake passage. J Geophys Res 108:8084. doi:10.1029/2001JC001147

    Article  Google Scholar 

  • de Lavergne C, Palter JB, Galbraith ED, Bernardello R, Marinov I (2014) Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat Clim Change 4:278–282. doi:10.1038/NCLIMATE2132

    Article  Google Scholar 

  • Depoorter MA, Bamber JL, Griggs JA, Lenaerts JTM, Ligtenberg SRM, van den Broeke MR, Moholdt G (2013) Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 502:89–92. doi:10.1038/nature12567

    Article  Google Scholar 

  • Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A (2011) Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: the Weddell gyre as a heat buffer. Deep Sea Res Part II 58:2509–2523. doi:10.1016/j.dsr2.2011.06.007

    Article  Google Scholar 

  • Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277

    Article  Google Scholar 

  • Gordon AL (1978) Deep Antarctic convection west of Maud Rise. J Phys Oceanogr 8:600–612

    Article  Google Scholar 

  • Gordon AL (1982) Weddell deep water variability. J Mar Res 40:199–217

    Google Scholar 

  • Gordon AL (2014) Southern Ocean polynya. Nat Clim Change 4:249–250

    Article  Google Scholar 

  • Gordon AL, Comiso JC (1988) Polynyas in the Southern Ocean. Sci Am 256:90–97

    Article  Google Scholar 

  • Gordon AL, Huber BA (1990) Southern Ocean winter mixed layer. J Geophys Res 95:11655–11672

    Article  Google Scholar 

  • Gordon AL, Visbeck M, Comiso JC (2007) A possible link between the Weddell Polynya and the Southern annular mode. J Clim 20:2558–2571

    Article  Google Scholar 

  • Heuzé C, Heywood KJ, Stevens DP, Ridley JK (2013) Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett 40:1409–1414

    Article  Google Scholar 

  • Heywood KJ et al (2014) Ocean processes at the Antarctic continental slope. Philos Trans R Soc A 372:20130047

    Article  Google Scholar 

  • Hirabara M, Tsujino H, Nakano H, Yamanaka G (2012) Formation mechanism of the Weddell Polynya and the impact on the global abyssal ocean. J Oceanogr 68:771–796

    Article  Google Scholar 

  • Holland DM (2001) Transient sea-ice polynya forced by oceanic flow variability. Prog Oceanogr 28:403–460

    Google Scholar 

  • Hughes CW, de Cuevas BA (2001) Why western boundary currents in realistic oceans are inviscid: a link between form stress and bottom pressure torques. J Phys Oceanogr 31:2871–2885

    Article  Google Scholar 

  • Jackett DR, MacDougall TJ (1997) A neutral density variable for the world’s oceans. J Phys Oceanogr 27:237–263

    Article  Google Scholar 

  • Jacobs SS (1991) On the nature and significance of the Antarctic Slope Front. Mar Chem 35:9–24. doi:10.1016/S0304-4203(09)90005-6

    Article  Google Scholar 

  • Karoly DJ (2003) Ozone and climate change. Science 302:236–237

    Article  Google Scholar 

  • Killworth PD (1979) On “Chimney” formation in the ocean. J Phys Oceanogr 9:531–554

    Article  Google Scholar 

  • Kjellsson J, Holland PR, Marshall GJ, Mathiot P, Aksenov Y, Coward AC, Bacon S, Megann AP, Ridley JK (2015) Model sensitivity of the Weddell and Ross seas, Antarctica, to vertical mixing and freshwater forcing. Ocean Model 94:141–152. doi:10.1016/j.ocemod.2015.08.003

    Article  Google Scholar 

  • Klatt O, Fahrbach E, Hoppema M, Rohardt G (2005) The transport of the Weddell Gyre across the prime meridian. Deep Sea Res Part II 52:513–528

    Article  Google Scholar 

  • Kusahara K, Hasumi H (2013) Modeling Antarctic ice shelf responses to future climate changes and impacts on the ocean. J Geophys Res 118:2454–2475. doi:10.1002/jgrc.20166

    Article  Google Scholar 

  • Latif M, Martin T, Park W (2013) Southern Ocean sector centennial climate variability and recent decadal trends. J Clim 26:7767–7782. doi:10.1175/JCLI-D-12-00281.1

    Article  Google Scholar 

  • Lindsay RW, Holland DM, Woodgate RA (2004) Halo of low ice concentration observed over the Maud rise seamount. Geophys Res Lett 31:L13302. doi:10.1029/2004GLO19831

    Article  Google Scholar 

  • Liu Y et al (2015) Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves. Proc Natl Acad Sci 112:3263–3268. doi:10.1073/pnas.1415137112

    Article  Google Scholar 

  • Losch M, Menemenlis D, Heimbach P, Campin J, Hill C (2010) On the formulation of sea-ice models. Part 1: effects of different solver implementations and parameterizations. Ocean Model 33:129–144

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C et al (1997a) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasihydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102:5733–5752

    Article  Google Scholar 

  • Martin T, Park W, Latif M (2013) Multi-centennial variability controlled by Southern Ocean convection in the Kiel climate model. Clim Dyn 40:2005–2022

    Article  Google Scholar 

  • Mathiot P, Goosse H, Fichefet T, Barnier B, Gallee H (2011) Modelling the seasonal variability of the Antarctic slope current. Ocean Sci Eur Geosci Union 7:445–532

    Google Scholar 

  • Mayewski PA et al (2009) State of the Antarctic and Southern Ocean climate system. Rev Geophys 47:RG1003. doi:10.1029/2007RG000231

    Article  Google Scholar 

  • Meier WN, Gallaher D, Campbell GG (2013) New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 7:699–705. doi:10.5194/tc-7-699-2013

    Article  Google Scholar 

  • Menemenlis D, Campin JM, Heimbach P et al (2008) ECCO2: high resolution global ocean and sea ice data synthesis. Mercat Ocean Q Newsl 31:13–21

    Google Scholar 

  • Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55–109

    Article  Google Scholar 

  • Orsi AH, Smethie Jr WM, Bullister JL (2002) On the total input of Antarctic Waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J Geophys Res 107(C8):3122. doi:10.1029/2001JC000976

    Article  Google Scholar 

  • Ou HW (1991) Some effects of a seamount on oceanic flows. J Phys Oceanogr 21:1835–1845

    Article  Google Scholar 

  • Parkinson CL (1983) On the development and cause of the Weddell Polynya in a sea ice simulation. J Phys Oceanogr 13:501–511

    Article  Google Scholar 

  • Pritchard HD, Ligtenberg SRM, Fricker HA, Vaughan DG, van den Broeke MR, Padman L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484:502–505

    Article  Google Scholar 

  • Purkey S, Johnson G (2012) Global contraction of Antarctic Bottom water between the 1980s and 2000s. J Clim 25:5830–5844

    Article  Google Scholar 

  • Purkey S, Johnson G (2013) Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J Clim 26:6105–6122

    Article  Google Scholar 

  • Rignot E, Casassa G, Gogineni P, Krabill W, Rivera A, Thomas R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys Res Lett 31:L18401. doi:10.1029/2004GL020697

    Article  Google Scholar 

  • Rignot E, Jacobs SS, Mouginot J, Scheuchl B (2013) Ice shelf melting around Antarctica. Science 341(6143):266–270

    Article  Google Scholar 

  • Robertson R, Visbeck M, Gordon AL, Fahrbach E (2002) Longterm temperature trends in the deep waters of the Weddell Sea. Deep Sea Res Part II 49:4791–4806

    Article  Google Scholar 

  • Schmidtko S, Heywood KJ, Thompson AF, Aoki S (2014) Multidecadal warming of Antarctic waters. Science 346:1227–1231. doi:10.1126/science.1256117

    Article  Google Scholar 

  • Smedsrud LH, Jenkins A, Holland D, Nøst O (2006) Modeling ocean processes below Fimbulisen, Antarctica. J Geophys Res 111:C01007. doi:10.1029/2005JC002915

    Article  Google Scholar 

  • Spence P et al (2014) Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys Res Lett 41:4601–4610

    Article  Google Scholar 

  • Stewart AL, Thompson AF (2015) Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys Res Lett 42:432–440. doi:10.1002/2014GL062281

    Article  Google Scholar 

  • St-Laurent P, Klinck JM, Dinniman MS (2013) On the role of coastal troughs in the circulation of warm circumpolar deep water on Antarctic Shelves. J Phys Oceanogr 43(1):51–64

    Article  Google Scholar 

  • Wang Z (2013) On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J Geophys Res Oceans 118:1070–1086. doi:10.1002/jgrc.20111

    Article  Google Scholar 

  • Wang Z, Meredith MP (2008) Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophys Res Lett. doi:10.1029/2008GL034344

    Google Scholar 

  • Wang Z, Kuhlbrodt T, Meredith MP (2011) On the response of the Antarctic circumpolar current transport to climate change in coupled climate models. J Geophys Res. doi:10.1029/2010JC006757

    Google Scholar 

  • Wang Z, Turner J, Sun B, Li B, Liu C (2014) Cyclone-induced rapid creation of extreme Antarctic sea ice conditions. Sci Rep 4:5317. doi:10.1038/srep05317

    Google Scholar 

  • Wang Z, Zhang X, Guan Z, Sun B, Yang X, Liu C (2015) An atmospheric origin of the multi-decadal bipolar seesaw. Sci Rep 5:8909. doi:10.1038/srep08909

    Article  Google Scholar 

  • Wüst G (1928) Der Ursprung der Atlantischen Tiefenwasser. Jubiläums-Sonderband Z Ges Erdkunde, Berlin

  • Zanowski H, Hallberg R, Sarmiento JL (2015) Abyssal Ocean warming and salinification after Weddell Polynyas in the GFDL CM2G coupled climate model. J Phys Oceanogr 45:2755–2772

    Article  Google Scholar 

  • Zwally HJ, Gloerson P (1977) Passive microwave images of the polar regions and research applications. Polar Rec 18:431–450

    Article  Google Scholar 

Download references

Acknowledgments

Z. Wang was supported by the China National Natural Science Foundation (NSFC) Project (41276200), by the Global Change Research Program of China (2015CB953904), by the Special Program for China Meteorology Trade (Grant No. GYHY201306020), by the Program for Innovation Research and Entrepreneurship team in Jiangsu Province, and by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). C. Liu is supported by the NSFC project (41306208). This paper is ESMC contribution No. 112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wu, Y., Lin, X. et al. Impacts of open-ocean deep convection in the Weddell Sea on coastal and bottom water temperature. Clim Dyn 48, 2967–2981 (2017). https://doi.org/10.1007/s00382-016-3244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3244-y

Keywords

Navigation