Skip to main content
Log in

Model simulations of mesoscale eddies and deep convection in the Labrador Sea

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Deep convection in the Labrador Sea is confined within a small region in the southwest part of the basin. The strength of deep convection in this region is related to the local atmospheric and ocean characteristics, which favor processes of deep convection preconditioning and intense air-sea exchange during the winter season. In this study, we explored the effect of eddy-induced flux transport on the stratification of the Labrador Sea and the properties of deep convection. Simulations from an eddy-resolving ocean model are presented for the Labrador Sea. The general circulation was well simulated by the model, including the seasonal cycle of the deep Labrador Current. The simulated distribution of the surface eddy kinetic energy was also close to that derived from Topex-Poseidon satellite altimeter data, but with smaller magnitude. The energy transfer diagnostics indicated that Irminger rings are generated by both baroclinic and barotropic processes; however, when they propagate into the interior basin, the barotropic process also disperses them by converting the eddy energy to the mean flow. In contrast to eddy-permitting simulations, deep convection in the Labrador Sea was better represented in the eddy-resolving model regarding their lateral position. Further analysis indicated that the improvement might be due to the lateral eddy flux associated with the resolved Irminger rings in the eddy-resolving model, which contributes to a realistic position of the isopycnal dome in the Labrador Sea and correspondingly a realistic site of deep convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: World Ocean Atlas 2005, Volume 2: Salinity. S. Levitus, Ed. NOAA Atlas NESDIS 62, U. S. Government Printing Office, Washington, D. C., 182 pp.

  • Blanke, B., and P. Delecluse, 1993: Low frequency variability of the tropical Atlantic Ocean simulated by a general circulation model with mixed layer physics. J. Phys. Oceanogr., 23, 1363–1388.

    Article  Google Scholar 

  • Blayo, E., and L. Debreu, 1999: Adaptive mesh refinement for finite-difference ocean models: First experiments. J. Phys. Oceanogr., 29, 1239–1250.

    Article  Google Scholar 

  • Bracco, A., and J. Pedlosky, 2003: Vortex generation by topography in locally unstable baroclinic flow. J. Phys. Oceanogr., 33, 207–219.

    Article  Google Scholar 

  • Bracco, A., J. Pedlosky, and R. Pickart, 2008: Eddy formation near the West coast of Greenland. J. Phys. Oceanogr., 38, 1992–2002.

    Article  Google Scholar 

  • Brankart, J.-M., and P. Brasseur, 1998: The general circulation in the Mediterranean Sea: A climatological approach. J. Mar. Syst., 18, 41–70.

    Article  Google Scholar 

  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification J. Phys. Oceanogr., 38, 1617–1643.

    Article  Google Scholar 

  • Clarke, R. A., and J.-C. Gascard, 1983: The formation of Labrador Sea Water. Part I: Large-scale processes. J. Phys. Oceanogr., 13, 1764–1778.

    Article  Google Scholar 

  • Cooke, M. A., E. Demirov, and J. Zhu, 2014: A model study of the relationship between sea-ice variability and surface and intermediate water mass properties in the Labrador Sea. Atmosphere-Ocean, 52(2), 142–154, doi: 10.1080/07055900.2013.877417.

    Article  Google Scholar 

  • Debreu, L., E. Blayo, and B. Barnier, 2005: A general adaptive multi-resolution approach to ocean modelling: Experiments in a primitive equation model of the North Atlantic. Adaptive Mesh Refinement: Theory and Applications. Vol. 41, Lecture Notes in Computational Science and Engineering, T. Plewa et al., Eds., Springer, 303–314.

    Google Scholar 

  • Demirov, E. K., and N. Pinardi, 2007: On the relationship between the water mass pathways and eddy variability in the western Mediterranean Sea. J. Geophys. Res., 112, C02024, doi: 10.1029/2005JC003174.

    Google Scholar 

  • Dengler, M., J. Fischer, F. A. Schott, and R. Zantopp, 2006: Deep Labrador Current and its variability in 1996–2005. Geophys. Res. Lett., 33, L21S06, doi: 10.1029/2006GL026702.

    Article  Google Scholar 

  • Ducet, N., P. Y. Le Traon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105 (C8), 19 477–19 498.

    Article  Google Scholar 

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 3346–3363.

    Article  Google Scholar 

  • Fichefet, T., and M. A. M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102, 12 609–12 646.

    Article  Google Scholar 

  • Fratantoni, D. M., 2001: North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. J. Geophys. Res., 106, 22 067–22 093.

    Article  Google Scholar 

  • Gao, Y. Q., and L. Yu, 2008: Subpolar gyre index and the North Atlantic meridional overturning circulation in a coupled climate model. Atmospheric and Oceanic Science Letters, 1, 29–32.

    Google Scholar 

  • Gaspar, P., Y. Grégoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing Tests at station papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 179–16 193.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Hátún, H., C. C. Eriksen, and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 2838–2854.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–472.

    Article  Google Scholar 

  • Käse, R. H., A. Biastoch, and D. B. Stammer, 2001: On the middepth circulation in the Labrador and Irminger seas. Geophys. Res. Lett., 28, 3433–3436.

    Article  Google Scholar 

  • Katsman, C. A., M. A. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 1967–1983.

    Article  Google Scholar 

  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger seas by direct velocity measurements. Nature, 407, 66–69.

    Article  Google Scholar 

  • Lazier, J. R. N., and D. G. Wright, 1993: Annual velocity variations in the Labrador Current. J. Phys. Oceanogr., 23, 659–678.

    Article  Google Scholar 

  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Progress in Oceanography, 59, 75–176.

    Article  Google Scholar 

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 61, U. S. Government Printing Office, Washington, D. C., 182 pp.

  • Madec, G., 2008: “NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27.

    Google Scholar 

  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 1–64.

    Article  Google Scholar 

  • Molines, J. M., B. Barnier, T. Penduff, L. Brodeau, A. Treguier, S. Theetten, and G. Madec, 2007: Definition of the interannual experiment ORCA025-G70, 1958–2004. LEGI Report, LEGI-DRA-2-11-2006, 34 pp.

    Google Scholar 

  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428–457.

    Article  Google Scholar 

  • Prater, M. D., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411–427.

    Article  Google Scholar 

  • Rykova, T., F. Straneo, J. M. Lilly, and I. Yashayaev, 2009: Irminger current anticyclones in the Labrador Sea observed in the hydrographic record, 1990–2004. J. Mar. Res., 67, 361–384.

    Article  Google Scholar 

  • Solomon, S., and Coauthors, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    Google Scholar 

  • Stammer, D., C. Böning, and C. Dieterich, 2001: The role of vari able wind forcing in generating eddy energy in the North Atlantic. Progress in Oceanography, 48, 289–312.

    Article  Google Scholar 

  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606–628.

    Article  Google Scholar 

  • Straneo, F., R. S. Pickart, and K. Lavender, 2003: Spreading of Labrador Sea Water: An advective-diffusive study based on Lagrangian data. Deep-Sea Res. I, 50, 701–719.

    Article  Google Scholar 

  • Thompson, K. R., D. G. Wright, Y. Lu, and E. Demirov, 2006: A simple method for reducing seasonal bias and drift in eddy resolving ocean models. Ocean Modelling, 13, 109–125.

    Article  Google Scholar 

  • Tréguier, A.-M., S. Theetten, E. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757–774.

    Article  Google Scholar 

  • U. S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 2006: 2-minute Gridded Global Relief Data (ETOPO2v2). [Available online at http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html].

    Google Scholar 

  • White, M., and K. Heywood, 1995: Seasonal and interannual changes in the North Atlantic subpolar gyre from Geosat and TOPEX/POSEIDON altimetry. J. Geophys. Res., 100(C12), 24 931–24 941.

    Article  Google Scholar 

  • Willebrand, J., and Coauthors, 2001: Circulation characteristics in three eddy-permitting models of the North Atlantic. Progress in Oceanography, 48, 123–161.

    Article  Google Scholar 

  • Wright, D. G., 1981: Baroclinic instability in Drake Passage. J. Phys. Oceanogr., 11, 231–246.

    Article  Google Scholar 

  • Zhu, J. S., E. Demirov, F. Dupont, and D. Wright, 2010: Eddypermitting simulations of the Sub-polar North Atlantic: Impact of the model bias on water mass properties and circulation. Ocean Dyn., 60, 1177–1192, doi: 10.1007/s10236-010-0320-4.

    Article  Google Scholar 

  • Zhu, J., and E. Demirov, 2011: On the mechanism of interannual variability of the Irminger Water in the Labrador Sea. J. Geophys. Res., 116, C03014, doi:10.1029/2009JC005677.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Entcho Demirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Demirov, E., Zhang, Y. et al. Model simulations of mesoscale eddies and deep convection in the Labrador Sea. Adv. Atmos. Sci. 31, 743–754 (2014). https://doi.org/10.1007/s00376-013-3107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3107-y

Key words

Navigation