Skip to main content
Log in

Impact of the observed extratropics on climatological simulations of the MJO in a tropical channel model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A regional model is used to quantify the influence of the extratropics on simulated tropical intraseasonal variability. The Weather Research and Forecasting (WRF) model is run in tropical channel mode with the boundaries at 30\(^{\circ }\)N and S constrained to 6-hourly reanalysis data. Experiments with modified boundary conditions are carried out in which intraseasonal (20–100 days) timescales are removed, or in which only the annual and diurnal cycles are retained. Twin runs are used to give an objective measure of the boundary-independant component of the variance in each case. The model captures MJO-like propagating structures and shows greater zonal-wind variance in runs with full boundary conditions. Comparison between experiments indicates that about half the intraseasonal variance can be attributed to boundary influence, and specifically to the presence of an intraseasonal extratropical signal. This signal is associated with stronger correlations between low-level zonal wind precursors in the Pacific sector and Indian Ocean convective events. Temporal coherence between MJO events in the model and the observations is analysed by defining four phases based on convectively coupled signals in the low-level zonal wind. The model can only match observed events above the level of chance when intraseasonal boundary information is provided. Results are analysed in terms of ‘primary’ and ‘successive’ events. Although the model hindcast skill is generally poor, it is better for successive events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adames AF, Patoux J, Foster RC (2014) The contribution of extratropical waves to the MJO wind field. J Atmos Sci 71:155–176

    Article  Google Scholar 

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D et al (2003) The version-2 global precipitation climatology project (gpcp) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Bellenger H, Duvel JP (2007) Intraseasonal convective perturbations related to the seasonal march of the Indo-Pacific monsoons. J Clim 20:2853–2863

    Article  Google Scholar 

  • Betts AK (1986) A new convective adjustment scheme. Part I: observational and theoretical basis. Q J Roy Meteorol Soc 112(473):677–691

    Google Scholar 

  • Betts A, Miller M (1986) A new convective adjustment scheme. Part II: single column tests using gate wave, bomex, atex and arctic air-mass data sets. Q J Roy Meteorol Soc 112(473):693–709

    Google Scholar 

  • Charnock H (1955) Wind stress on a water surface. Q J Roy Meteorol Soc 81(350):639–640

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state-ncar mm5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Crueger T, Stevens B, Brokopf R (2013) The Madden–Julian oscillation in echam6 and the introduction of an objective mjo metric. J Clim 26(10):3241–3257

    Article  Google Scholar 

  • Dias J, Leroux S, Tulich S, Kiladis G (2013) How systematic is organized tropical convection within the mjo? Geophys Res Lett 40(7):1420–1425

    Article  Google Scholar 

  • Ding M, Kuang Z (2016) A mechanism-denial study on the madden-julian oscillation with reduced interference from mean state changes. Geophys Res Lett 43 (doi:10.1002/2016GL06772.)

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107

    Article  Google Scholar 

  • Ferranti L, Palmer T, Molteni F, Klinker E (1990) Tropical–extratropical interaction associated with the 30–60 days oscillation and its impact on medium and extended range prediction. J Atmos Sci 47(18):2177–2199

    Article  Google Scholar 

  • Flatau MK, Flatau PJ, Rudnick D (2001) The dynamics of double monsoon onsets. J Clim 14(21):4130–4146

    Article  Google Scholar 

  • Flatau MK, Flatau PJ, Schmidt J, Kiladis GN (2003) Delayed onset of the 2002 Indian monsoon. Geophys Res Lett 30(14):1768. doi:10.1029/2003GL017434

    Article  Google Scholar 

  • Frederiksen JS (2002) Genesis of intraseasonal oscillations and equatorial waves. J Atmos Sci 59(19):2761–2781

    Article  Google Scholar 

  • Frederiksen J, Frederiksen C (1997) Mechanisms of the formation of intraseasonal oscillations and australian monsoon disturbances: the roles of convection, barotropic and baroclinic instability. Contrib Atmos Phys 70(1):39–56

    Google Scholar 

  • Frederiksen JS, Lin H (2013) Tropical–extratropical interactions of intraseasonal oscillations. J Atmos Sci 70(10):3180–3197

    Article  Google Scholar 

  • Gustafson WI, Weare BC (2004a) Mm5 modeling of the Madden–Julian oscillation in the Indian and West Pacific Oceans: -model description and control run results. J Clim 17(6):1320–1337

    Article  Google Scholar 

  • Gustafson WI, Weare BC (2004b) Mm5 modeling of the Madden–Julian oscillation in the Indian and west Pacific Oceans: implications of 30–70-day boundary effects on mjo development. J Clim 17(6):1338–1351

    Article  Google Scholar 

  • Hendon HH, Liebmann B, Newman M, Glick JD, Schemm J (2000) Medium-range forecast errors associated with active episodes of the Madden–Julian oscillation. Mon Weather Rev 128(1):69–86

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) The life cycle of the Madden–Julian oscillation. J Atmos Sci 51(15):2225–2237

    Article  Google Scholar 

  • Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

    Article  Google Scholar 

  • Hoskins BJ, Yang G (2000) The equatorial response to higher-latitude forcing. J Atmos Sci 57:1197–1213

    Article  Google Scholar 

  • Hsu HH, Hoskins BJ, Jin FF (1990) The 1985/1986 intraseasonal oscillation and the role of the extratropics. J Atmos Sci 47(7):823–839

    Article  Google Scholar 

  • Hung MP, Lin JL, Wang W, Kim D, Shinoda T, Weaver SJ (2013) Mjo and convectively coupled equatorial waves simulated by cmip5 climate models. J Clim 26(17):6185–6214

    Article  Google Scholar 

  • Inness PM, Slingo JM (2003) Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: comparison with observations and an atmosphere-only gcm. J Clim 16(3):345–364

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122(5):927–945

    Article  Google Scholar 

  • Jourdain NC, Marchesiello P, Menkes CE, Lefevre J, Vincent EM, Lengaigne M, Chauvin F (2011) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim 24(1):3–25

    Article  Google Scholar 

  • Jung T, Palmer T, Rodwell M, Serrar S (2010) Understanding the anomalously cold European winter of 2005/2006 using relaxation experiments. Mon Weather Rev 138(8):3157–3174

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kerns BW, Chen SS (2014) Equatorial dry air intrusion and related synoptic variability in mjo initiation during dynamo. Mon Weather Rev 142(3):1326–1343

    Article  Google Scholar 

  • Kiladis GN, Dias J, Straub KH, Wheeler MC, Tulich SN, Kikuchi K, Weickmann KM, Ventrice MJ (2014) A comparison of olr and circulation-based indices for tracking the mjo. Mon Weather Rev 142(5):1697–1715

    Article  Google Scholar 

  • Knutson TR, Weickmann KM (1987) 30–60 days atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon Weather Rev 115(7):1407–1436

    Article  Google Scholar 

  • Landu K, Maloney ED (2011) Effect of SST distribution and radiative feedbacks on the simulation of intraseasonal variability in an aquaplanet GCM. J Meteor Soc Japan 89(3):195–210. doi:10.2151/jmsj.2011-302

    Article  Google Scholar 

  • Lau WKM, Waliser DE (2012) Intraseasonal variability in the atmosphere-ocean climate system. Environmental Sciences, edn 2. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-13914-7

  • L’Heureux ML, Higgins RW (2008) Boreal winter links between the Madden–Julian oscillation and the Arctic oscillation. J Clim 21(12):3040–3050

    Article  Google Scholar 

  • Liebmann B, Hartmann DL (1984) An observational study of tropical-midlatitude interaction on intraseasonal time scales during winter. J Atmos Sci 41:3333–3350

    Article  Google Scholar 

  • Lin H, Derome J, Brunet G (2007) The nonlinear transient atmospheric response to tropical forcing. J Clim 20(22):5642–5665

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 days oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28(5):702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 days period. J Atmos Sci 29(6):1109–1123

    Article  Google Scholar 

  • Maloney ED, Sobel AH (2004) Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J Clim 17(22):4368–4386

    Article  Google Scholar 

  • Matthews AJ (2008) Primary and successive events in the Madden–Julian oscillation. Q J Roy Meteorol Soc 134(631):439–453

    Article  Google Scholar 

  • Matthews AJ, Kiladis GN (1999) The tropical extratropical interaction between high-frequency transients and the Madden Julian oscillation. Mon Weather Rev 127:661–667

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J Geophys Res: Atmos (1984–2012) 102(D14), 16663–16682

  • Moore RW, Martius O, Spengler T (2010) The modulation of the subtropical and extratropical atmosphere in the pacific basin in response to the Madden Julian oscillation. Mon Weather Rev preprint (2010), 0000 (February 2010)

  • Noh Y, Cheon W, Hong S, Raasch S (2003) Improvement of the k-profile model for the planetary boundary layer based on large Eddy simulation data. Bound-Layer Meteorol 107(2):401–427

    Article  Google Scholar 

  • Pan LL, Li T (2008) Interactions between the tropical iso and midlatitude low-frequency flow. Clim Dyn 31(4):375–388

    Article  Google Scholar 

  • Ray P, Li T (2013) Relative roles of circumnavigating waves and extratropics on the mjo and its relationship with the mean state*. J Atmos Sci 70(3):876–893

    Article  Google Scholar 

  • Ray P, Zhang C (2010) A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J Atmos Sci 67(2):515–528

    Article  Google Scholar 

  • Ray P, Zhang C, Dudhia J, Chen SS (2009) A numerical case study on the initiation of the Madden–Julian oscillation. J Atmos Sci 66:310–+

  • Ray P, Zhang C, Moncrieff MW, Dudhia J, Caron JM, Leung LR, Bruyere C (2011) Role of the atmospheric mean state on the initiation of the Madden–Julian oscillation in a tropical channel model. Clim Dyn 36(1–2):161–184

    Article  Google Scholar 

  • Reynolds R, Rayner N, Smith T, Stokes D, Wang W (2002) An improved in situ and satellite sst analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Roundy PE (2008) Analysis of convectively coupled Kelvin waves in the Indian Ocean mjo. J Atmos Sci 65(4):1342–1359

    Article  Google Scholar 

  • Roundy PE (2012) Tropical–extratropical interactions. In: Intraseasonal variability in the atmosphere-ocean climate system. Springer, pp 497–512

  • Salby M, Hendon HH (1994) Intraseasonal behavior of clouds, temperature, and motion in the tropics. J Atmos Sci 51:2207–2224

    Article  Google Scholar 

  • Straus DM, Lindzen RS (2000) Planetary-scale baroclinic instability and the mjo. J Atmos Sci 57(21):3609–3626

    Article  Google Scholar 

  • Vitart F, Jung T (2010) Impact of the northern hemisphere extratropics on the skill in predicting the Madden Julian oscillation. Geophys Res Lett 37(23):L23805. doi:10.1029/2010GL045465

    Article  Google Scholar 

  • Weickmann K, Berry E (2009) The tropical Madden–Julian oscillation and the global wind oscillation. Mon Weather Rev 137(5):1601–1614

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Woolnough S, Vitart F, Balmaseda M et al (2007) The role of the ocean in the Madden–Julian oscillation: implications for mjo prediction. Q J Roy Meteorol Soc 133(622):117

    Article  Google Scholar 

  • Yanai M, Lu MM (1983) Equatorially trapped waves at the 200 mb level and their association with meridional convergence of wave energy flux. J Atmos Sci 40(12):2785–2803

    Article  Google Scholar 

  • Yoneyama K, Zhang C, Long CN (2013) Tracking pulses of the Madden–Julian oscillation. Bull Am Meteorol Soc 94(12):1871–1891

    Article  Google Scholar 

  • Zeng X, Beljaars A (2005) A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys Res Lett 32(14):L14605. doi:10.1029/2005GL023030

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43(2):RG2003. doi:10.1029/2004RG000158

    Article  Google Scholar 

  • Zhao C, Li T, Zhou T (2013) Precursor signals and processes associated with mjo initiation over the tropical Indian Ocean*. J Clim 26(1):291–307

    Article  Google Scholar 

  • Zhou S, Miller AJ (2005) The interaction of the Madden–Julian oscillation and the Arctic oscillation. J Clim 18(1):143–159

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for suggestions that helped improve the clarity and pertinence of the manuscript. Severin Thibaut was supported by a grant from the french ministry of research and higher education. Model integrations were performed using HPC resources from CALMIP computing centre, Toulouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas M. J. Hall.

Additional information

LEGOS, University of Toulouse, UPS, IRD, CNRS, CNES.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, N.M.J., Thibaut, S. & Marchesiello, P. Impact of the observed extratropics on climatological simulations of the MJO in a tropical channel model. Clim Dyn 48, 2541–2555 (2017). https://doi.org/10.1007/s00382-016-3221-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3221-5

Keywords

Navigation