Skip to main content
Log in

Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The evolution of Indian Ocean dipole (IOD) and its forcing mechanisms are examined based on the analysis of coupled model simulations that allow or suppress the El Niño-Southern Oscillation (ENSO) mode of variability. The model can reproduce the most salient observed features of IOD even without ENSO, including the relationships between the eastern and western poles at both the surface and subsurface, as well as their seasonality. This suggests that ENSO is not fundamental for the existence of IOD. It is demonstrated that cold (warm) sea surface temperature (SST) anomalies in the eastern Indian Ocean associated with IOD can be initiated by springtime Indonesian rainfall deficit (surplus) through local surface wind response. The growth of the SST anomalies depends on the initial local subsurface condition. Both the air–sea interaction and surface–subsurface interaction contribute to the development of IOD. The evolution of IOD can be represented by two leading extended empirical orthogonal function (EEOF) modes of tropical surface–subsurface Indian Ocean temperatures; one stationary and the other non-stationary. The onset, growth, and termination of IOD, as well as the transition to an opposite phase, can be interpreted as alternations between the non-propagating mode (EEOF1) and the eastward-propagating Kelvin wave (EEOF2). The evolution of IOD is also accompanied by a westward-propagating Rossby wave which is captured in the EEOF1 of the subtropical surface–subsurface Indian Ocean temperatures. Therefore, both Bjerknes feedback and a delayed oscillator operate during the evolution of IOD in the absence of ENSO also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ajayamohan RS, Rao SA, Luo J-J, Yamagata T (2009) Influence of Indian Ocean dipole on boreal summer intraseasonal oscillations in a coupled general circulation model. J Geophys Res: Atmos 114:D06119. doi:10.1029/2008JD011096

    Article  Google Scholar 

  • Aldrian E, Susanto RD (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 23:1435–1452. doi:10.1002/joc.950

    Article  Google Scholar 

  • Annamalai H, Murtugudde R, Potemra J, Xie SP, Liu P, Wang B (2003) Coupled dynamics over the Indian Ocean: spring initiation of the zonal mode. Dee-Sea Res II 50:2305–2330. doi:10.1016/S0967-0645(03)00058-4

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere–ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Behera SK, Luo J-J, Masson S, Rao SA, Sakuma H, Tamagata T (2006) A CGCM study on the interaction between IOD and ENSO. J Clim 19:1688–1705

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA, American Meteor Society. http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm

  • Carton JA, Chepurin G, Cao X, Giese BS (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: Methodology. J Phys Oceanogr 30:294–309

    Google Scholar 

  • Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time-scale of Indian Ocean dipole. Deep-Sea Res 50:2263–2284

    Google Scholar 

  • Feng M, Meyers G, Wijffels S (2001) Interannual upper ocean variability in the tropical Indian Ocean. Geophys Res Lett 28:4151–4154

    Article  Google Scholar 

  • Feng J, Hu D, Yu L (2014) How does the Indian Ocean subtropical dipole trigger the tropical Indian Ocean dipole via the Mascarene high? Acta Oceanol Sin 33:64–76. doi:10.1007/s13131-014-0425-6

    Article  Google Scholar 

  • Fischer AS, Terray P, Guilyardi E, Gualdi S, Delecluse P (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449. doi:10.1175/JCLI3478.1

    Article  Google Scholar 

  • Francis PA, Gadgil S, Vinayachandran PN (2007) Triggering of the positive Indian Ocean dipole events by severe cyclones over the Bay of Bengal. Tellus 59A:461–475. doi:10.1111/j.1600-0870.2007.00254.x

    Article  Google Scholar 

  • Gadgil S, Vinayachandran PN, Francis PA, Gadgil S (2004) Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys Res Lett. doi:10.1029/2004GL019733

    Google Scholar 

  • Gill AE (1980) Some simple solution for heat-induced tropical circulation. Quart J Roy Meteor Soc 106:447–462

    Article  Google Scholar 

  • Gnanaseelan C, Vaid BH, Polito PS (2008) Impact of biannual Rossby waves on the Indian Ocean dipole. Geosci Remote Sensing Lett 5:427–429

    Article  Google Scholar 

  • Hendon HH (2003) Indonesian rainfall variability: impact of ENSO and local air–sea interaction. J Clim 16:1775–1790

    Article  Google Scholar 

  • Hong C-C, Lu M-M, Kanamitsu M (2008) Temporal and spatial characteristics of positive and negative Indian Ocean dipole with and without ENSO. J Geophys Res 113:D08107. doi:10.1029/2007JD009151

    Google Scholar 

  • Huang B, Kinter JL III (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res 107:3199. doi:10.1029/2001JC001278

    Article  Google Scholar 

  • Iskandar I, Mardiansyah W, Setiabudidaya D, Poerwono P, Kurniawati N, Saymsuddin F, Nagura M (2014) Equatorial oceanic waves and the evolution of 2007 positive Indian Ocean Dipole. Terr Atmos Ocean Sci 25:847–856. doi:10.3319/TAO.2014.08.25.01(Oc)

    Article  Google Scholar 

  • Izumo T, Montegut CB, Luo J-J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, Montegut CB, Behera SK, Luo J-J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Nino. Nature Geosci 3:168–172. doi:10.1038/ngeo760

    Article  Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc 83:1631–1643

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142. doi:10.1175/JCLI3992.1

    Article  Google Scholar 

  • Kim ST, Yu J-Y, Kumar A, Wang H (2012) Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon Wea Rev 140:1908–1923

    Article  Google Scholar 

  • Kumar A, Wang H, Wang W, Xue Y, Hu Z-Z (2013) Does knowing the oceanic PDO phase help predict the atmospheric anomalies in subsequent months? J Clim 26:1268–1285

    Article  Google Scholar 

  • Lee T, Waliser DE, Li J-LF, Landerer FW, Gierach MM (2013) Evaluation of CMIP3 and CMIP5 wind stress climatology using satellite measurements and atmospheric reanalysis products. J Clim 26:5810–5826

    Article  Google Scholar 

  • Li T, Wang B, Chang C-P, Zhang Y (2003) A theory for the Indian Ocean dipole–zonal mode. J Atmos Sci 60:2119–2135

    Article  Google Scholar 

  • Lübbecke JF (2013) Climate science: tropical Atlantic warm events. Nature Geosci 6:22–23. doi:10.1038/ngro1685

    Article  Google Scholar 

  • Luo J-J, Masson S, Behera S, Yamagata T (2007) Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J Clim 20:2178–2190

    Article  Google Scholar 

  • McPhaden MJ, Nagura M (2014) Indian Ocean dipole interpreted in terms of recharge oscillator theory. Clim Dyn 42:1569–1586. doi:10.1007/s00382-013-1765-1

    Article  Google Scholar 

  • Moorthi S, Pan H-L, Caplan P (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS technical procedures bulletin no. 484, 14 pp. http://www.nws/noaa.gov/om/tpb/484.htm

  • Murtugudde R, McCreary JP Jr, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J Geophys Res 105:3295–3306

    Article  Google Scholar 

  • Nagura M, Sasaki W, Tozuka T, Luo J-J, Behera SK, Yamagata T (2013) Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models. J Geiphys Res: Oceans 118:831–846

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 manual. NOAA/GFDL 668 pp

  • Pan H-L, Mahrt L (1987) Interaction between soil hydrology and boundary layer developments. Bound-Layer Meteor 38:185–202

    Article  Google Scholar 

  • Pokhrel S, Chaudhari HS, Saha SK, Dhakate A, Yadav RK, Salunke K, Mahapatra S, Rao SA (2012) ENSO, IOD, and Indian summer monsoon in NCEP climate forecast system. Clim Dyn 39:2143–2165. doi:10.1007/s00382-012-1349-5

    Article  Google Scholar 

  • Rao SA, Behera SK (2005) Subsurface influence on SST in the tropical Indian Ocean: structure and interannual variability. Dyns Atmos Oceans 39:103–135

    Article  Google Scholar 

  • Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean dipole. Deep-Sea Res II 49:1549–1572. doi:10.1016/S0967-0645(01)00158-8

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J Clim 16:2735–2751

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sayantani O, Gnanaseelan C (2014) Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms. Clim Dyn. doi:10.1007/s00382-014-2379-y

    Google Scholar 

  • Shi L, Hendon HH, Alves O (2012) How predictable is the Indian Ocean dipole? Mon Wea Rev 140:3867–3884

    Article  Google Scholar 

  • Shinoda T, Hendon HH, Alexander MA (2004) Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep-Sea Res I 51:619–635. doi:10.1016/j.dsr.2004.01.005

    Article  Google Scholar 

  • Sooraj KP, Annamalai H, Kumar A, Wang H (2012) A comprehensive assessment of CFS seasonal forecasts over the tropics. Wea Forecasting 27:3–27

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2012) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Sun S, Lan J, Fang Y, Tana GaoX (2015) A triggering mechanism for the Indian Ocean dipoles independent of ENSO. J Clim 28:5063–5076

    Article  Google Scholar 

  • Wajsowicz RC (2007) Seasonal-to-interannual forecasting of tropical Indian Ocean sea surface temperature anomalies: potential predictability and barriers. J Clim 20:3320–3343. doi:10.1175/JCLI4162.1

    Article  Google Scholar 

  • Wang H, Kumar A (2015) Assessing the impact of ENSO on drought in the U.S. Southwest with the NCEP climate model simulations. J Hydrol 526:30–41. doi:10.1016/j.jhydrol.2014.12.012

    Article  Google Scholar 

  • Wang X, Wang C (2014) Different impacts of various El Nino events on the Indian Ocean dipole. Clim Dyn 42:991–1005. doi:10.1007/s00382-013-1711-2

    Article  Google Scholar 

  • Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impacts on Asian-Australian monsoon variation. J Clim 16:1195–1211

    Article  Google Scholar 

  • Wang H, Kumar A, Wang W, Xue Y (2012a) Seasonality of the Pacific decadal oscillation. J Clim 25:25–38

    Article  Google Scholar 

  • Wang H, Kumar A, Wang W, Xue Y (2012b) Influence of ENSO on Pacific decadal variability: an analysis based on the NCEP climate forecast system. J Clim 25:6136–6151

    Article  Google Scholar 

  • Wang H, Kumar A, Wang W (2013) Characteristics of subsurface ocean response to ENSO assessed from simulations with the NCEP climate forecast system. J Clim 26:8065–8083

    Article  Google Scholar 

  • Weare BC, Nasstrom JS (1982) Examples of extended empirical orthogonal function analysis. Mon Wea Rev 110:481–485

    Article  Google Scholar 

  • Webster PJ, Hoyos CD (2010) Beyond the spring barrier? Nature Geosci 3:152–153

    Article  Google Scholar 

  • Wilson EA, Gordon AL, Kim D (2013) Observations of the Madden Julian oscillation during Indian Ocean dipole events. J Geophys Res: Atmos 118:2588–2599. doi:10.1002/jgrd.50241

    Google Scholar 

  • Wu R, Kirtman BP (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031

    Article  Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Amer Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Yamagata T, Behera SK, Luo J-J, Masson S, Jury M, Rao SA (2004) Coupled ocean–atmosphere variability in the tropical Indian Ocean. Geophys Monogr 147:189–212

    Google Scholar 

  • Yu J-Y, Lau KM (2005) Contrasting Indian Ocean SST variability with and without ENSO influence: a coupled atmosphere-ocean GCM study. Meteorol Atmos Phys 90:179–191. doi:10.1007/s00703-004-0094-7

    Article  Google Scholar 

  • Yuan J, Cao J (2013) North Indian Ocean tropical cyclone activities influenced by the Indian Ocean dipole mode. Sci China Earth Sci 56:855–865. doi:10.1007/s11430-012-4559-0

    Article  Google Scholar 

  • Zhang Q, Yang S (2007) Seasonal phase-locking of peak events in the eastern Indian Ocean. Adv Atmos Sci 24:781–798

    Article  Google Scholar 

  • Zhao Y, Nigam S (2015) The Indian Ocean dipole: a monopole in SST. J Clim 28:3–19. doi:10.1175/JCLI-D-14-00047.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous reviewers and the editor for their insightful and constructive comments and suggestions. Partial support from the National Monsoon Mission is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Murtugudde, R. & Kumar, A. Evolution of Indian Ocean dipole and its forcing mechanisms in the absence of ENSO. Clim Dyn 47, 2481–2500 (2016). https://doi.org/10.1007/s00382-016-2977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-2977-y

Keywords

Navigation