Skip to main content

Advertisement

Log in

Detection of anthropogenic influence on the evolution of record-breaking temperatures over Europe

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Changes in temperature extreme events are expected as a result of anthropogenic climate change, but uncertainties exist in when and how these changes will be manifest regionally. This is especially the case over Europe due to different methodologies and definitions of temperature extreme events. An alternative approach is to examine changes in record-breaking temperatures. Datasets of observed temperature combined with ensembles of climate model simulations are used to assess the possible causes and significance of record-breaking temperature changes over the late twentieth and twenty-first centuries. A simple detection methodology is first applied to evaluate the extent to which the effect of anthropogenic forcing can be detected in present-day observed and simulated changes in record-breaking temperature. We then study the projected evolution of record-breaking daily minimum and maximum temperatures over the twenty-first century in Europe with a climate model. The same detection approach is used to identify the time of emergence of the anthropogenic signal relative to a model-derived estimate of internal variability. From the 1980s onwards, a change in the evolution of cold and warm records is observed and simulated, but it still remains in the range of internal variability until the end of the twentieth century. Minimum and maximum record-breaking temperatures tend to occur (respectively) less and more often than during the 1960s and 1970s taken as representative of a stationary climate. Model simulations with natural forcing only fail to reproduce the observed changes after the 1980s while the latter are compatible with simulations constrained by anthropogenic forcings. The deviation from the characteristic behavior of a stationary climate record-wise initiated in the 1980s is projected to accentuate during the twenty-first century. Annual changes become inconsistent with the model-derived internal variability between the 2020s and 2030s. Over the last three decades of the twenty-first century and under the RCP8.5 scenario, warm records occur on average five times more often than initially. Conversely, breaking new cold record become extremely difficult. The Mediterranean region is particularly affected in summer, whereas central and northeastern Europe is more impacted in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson A, Kostinski A (2010) Reversible record breaking and variability: temperature distributions across the globe. J Appl Meteorol Climatol 49(8):1681–1691. doi:10.1175/2010JAMC2407.1

    Article  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science (New York, N.Y.) 332(6026):220–224. doi:10.1126/science.1201224

    Article  Google Scholar 

  • Benestad RE (2003) How often can we expect a record event ? Clim Res 25:3–13

    Article  Google Scholar 

  • Benestad RE (2004) Record-values, nonstationary tests and extreme value distributions. Glob Planet Change 44(1–4):11–26. doi:10.1016/j.gloplacha.2004.06.002

    Article  Google Scholar 

  • Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35(5):L05702. doi:10.1029/2007GL032417

    Article  Google Scholar 

  • Christiansen B (2013) Changes in temperature records and extremes: are they statistically significant? J Clim 26(20):7863–7875. doi:10.1175/JCLI-D-12-00814.1

    Article  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change. doi:10.1038/NCLIMATE1452

    Google Scholar 

  • Coumou D, Robinson A, Rahmstorf S (2013) Global increase in record-breaking monthly-mean temperatures. Clim Change 118(3–4):771–782. doi:10.1007/s10584-012-0668-1

    Article  Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112(D15):D15103. doi:10.1029/2007JD008510

    Article  Google Scholar 

  • Elguindi N, Rauscher SA, Giorgi F (2012) Historical and future changes in maximum and minimum temperature records over Europe. Clim Change 117(1–2):415–431. doi:10.1007/s10584-012-0528-z

    Google Scholar 

  • Fischer EM, Rajczak J, Schär C (2012) Changes in European summer temperature variability revisited. Geophys Res Lett. doi:10.1029/2012GL052730

    Google Scholar 

  • Franke J, Wergen G, Krug J (2010) Records and sequences of records from random variables with a linear trend. J Stat Mech. doi:10.1088/1742-5468/2010/10/P10013

    Google Scholar 

  • Gupta AS, Jourdain NC, Brown JN, Monselesan D (2013) Climate drift in the CMIP5 models*. J Clim 26(21):8597–8615. doi:10.1175/JCLI-D-12-00521.1

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci USA 109(37):E2415–E2423. doi:10.1073/pnas.1205276109

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20):D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 996 pp

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, 582 pp

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535 pp

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Krug J (2007) Records in a changing world. J Stat Mech Theory Exp 2007(07):P07001–P07001. doi:10.1088/1742-5468/2007/07/P07001

    Article  Google Scholar 

  • Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the US. Geophys Res Lett 36(23):L23701. doi:10.1029/2009GL040736

    Article  Google Scholar 

  • NCL (2013) The NCAR command language (Version 6.1.2) [Software]. UCAR/NCAR/CISL/VETS, Boulder, Colorado. doi:10.5065/D6WD3XH5

    Google Scholar 

  • Newman WI, Malamud BD, Turcotte DL (2010) Statistical properties of record-breaking temperatures. Phys Rev E 82(6):066111. doi:10.1103/PhysRevE.82.066111

    Article  Google Scholar 

  • Parey S, Dacunha-Castelle D, Hoang TTH (2009) Mean and variance evolutions of the hot and cold temperatures in Europe. Clim Dyn 34(2–3):345–359. doi:10.1007/s00382-009-0557-0

    Google Scholar 

  • Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C (2012) The challenge to keep global warming below 2°C. Nat Clim Change 3(1):4–6. doi:10.1038/nclimate1783

    Article  Google Scholar 

  • Rahmstorf S, Coumou D (2011) Increase of extreme events in a warming world. Proc Natl Acad Sci USA 108(44):17905–17909. doi:10.1073/pnas.1101766108

    Article  Google Scholar 

  • Redner S, Petersen M (2006) Role of global warming on the statistics of record-breaking temperatures. Phys Rev E 74(6):061114. doi:10.1103/PhysRevE.74.061114

    Article  Google Scholar 

  • Robine J-M, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel J-P, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. CR Biol 331(2):171–178. doi:10.1016/j.crvi.2007.12.001

    Article  Google Scholar 

  • Ruokolainen L, Räisänen J (2009) How soon will climate records of the 20th century be broken according to climate model simulations? Tellus A 61(4):476–490. doi:10.1111/j.1600-0870.2009.00398.x

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427(January):3926–3928. doi:10.1038/nature02230.1

    Google Scholar 

  • Scherrer SC, Apenzeller C, Liniger MA, Schär C (2005) European temperature distribution changes in observations and climate change scenarios. Geophys Res Lett 32(19):L19705. doi:10.1029/2005GL024108

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land–atmosphere coupling and climate change in Europe. Nature 443(7108):205–209. doi:10.1038/nature05095

    Article  Google Scholar 

  • Shindell DT, Schmidt GA (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109(D5):D05104. doi:10.1029/2003JD004151

    Google Scholar 

  • Terray L, Boé J (2013) Quantifying 21st-century France climate change and related uncertainties. CR Geosci 345(3):136–149. doi:10.1016/j.crte.2013.02.003

    Article  Google Scholar 

  • Trewin B, Vermont H (2010) Changes in the frequency of record temperatures in Australia, 1957–2009. Aust Meteorol Oceanogr J 60:113–119

    Google Scholar 

  • Van Vuuren DP, Eickhout B, Lucas PL, den Elzen MGJ (2006) Long-term multi-gas scenarios to stabilise radiative forcing: exploring costs and benefits within an integrated assessment framework. Energy J SI2006(01):201234. doi:10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-10

    Google Scholar 

  • Van Vuuren DP, Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, Ruijven B, Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81(2):119159. doi:10.1007/s10584-006-9172-9

    Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Chauvin F (2012) The global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121. doi:10.1007/s00382-011-1259-y

    Google Scholar 

  • Wergen G, Krug J (2010) Record-breaking temperatures reveal a warming climate. EPL (Europhys Lett) 92(3):30008. doi:10.1209/0295-5075/92/30008

    Article  Google Scholar 

  • Wergen G, Hense A, Krug J (2014) Record occurrence and record values in daily and monthly. Clim Dyn 42(5–6):1275–1289

    Article  Google Scholar 

  • Wigley TML (2000) ENSO, volcanoes and record-breaking temperatures. Geophys Res Lett 27(24):4101–4104. doi:10.1029/2000GL012159

    Article  Google Scholar 

  • Wild M (2011) Enlightening global dimming and brightening. Bull Am Meteorol Soc 93(1):27–37. doi:10.1175/BAMS-D-11-00074.1

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by EDF and by the French National Research Agency (ANR) and its program «Investissements d’avenir» under the Grant ANR-11-RSNR-0021. The authors thank Aurelien Ribes and Julien Cattiaux for their very helpful suggestions. All analyses and graphics have been done using the NCAR Command Language (NCL 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Bador.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bador, M., Terray, L. & Boé, J. Detection of anthropogenic influence on the evolution of record-breaking temperatures over Europe. Clim Dyn 46, 2717–2735 (2016). https://doi.org/10.1007/s00382-015-2725-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2725-8

Keywords

Navigation