Skip to main content

Advertisement

Log in

Resolving the upper-ocean warm layer improves the simulation of the Madden–Julian oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Here we show that coupling a high-resolution one-column ocean model to an atmospheric general circulation model dramatically improves simulation of the Madden–Julian oscillation (MJO) to have realistic strength, period, and propagation speed. The mechanism for the simulated MJO involves both frictional wave-convective conditional instability of the second kind (Frictional wave-CISK) and air–sea convective intraseasonal interaction (ASCII). In particular, better resolving the fine structure of upper ocean temperature, especially the warm layer, produces more vigorous atmosphere–ocean interaction and strengthens intraseasonal variations in both SST and atmospheric circulation. This helps organize and strengthen deep convection, inducing a stronger Kelvin-wave like perturbation and frictional near-surface convergence to the east. In addition, the warmer SST ahead of the MJO also acts to destabilize the boundary layer and enhance frictional convergence. These lead to a more realistic eastward-propagating MJO. A suite of sensitivity experiments were performed to show the robustness of the mechanisms and to demonstrate: (1) that mean state differences are not the main contributors to the improved simulation of our coupled model; (2) the role of SST variability in enhancing frictional convergence and intraseasonal variations in precipitation, and (3) that the simulation is significantly degraded when the first ocean model layer is thicker than 10 m. Our coupled model results are consistent with observations and demonstrate a simple but effective means to significantly improve MJO simulation and potentially also forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Typically defined as the region of water warmer than 29 °C in the Indo-Pacific region.

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P-P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Ajayamohan R, Khouider B, Majda AJ (2013) Realistic initiation and dynamics of the Madden–Julian oscillation in a coarse resolution aquaplanet GCM. Geophys Res Lett 40(23):6252–6257

    Article  Google Scholar 

  • Andersen JA, Kuang Z (2012) Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J Clim 25(8):2782–2804

    Article  Google Scholar 

  • Bernie D, Woolnough S, Slingo J, Guilyardi E (2005) Modeling diurnal and intraseasonal variability of the ocean mixed layer. J Clim 18(8):1190–1202

    Article  Google Scholar 

  • Bernie D, Guilyardi E, Madec G, Slingo J, Woolnough S, Cole J (2008) Impact of resolving the diurnal cycle in an ocean–atmosphere GCM. Part 2: a diurnally coupled CGCM. Clim Dyn 31(7–8):909–925

    Article  Google Scholar 

  • Chen SS, Houze RA Jr, Mapes BE (1996) Multiscale variability of deep convection in realation to large-scale circulation in TOGA COARE. J Atmos Sci 53(10):1380–1409

    Article  Google Scholar 

  • CLIVAR MJOWG (2009) MJO simulation diagnostics. J Clim 22(11):3006–3030

    Article  Google Scholar 

  • Crueger T, Stevens B, Brokopf R (2013) The Madden–Julian Oscillation in ECHAM6 and the introduction of an objective MJO metric. J Clim 26(10):3241–3257

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Deng L, Wu X (2010) Effects of convective processes on GCM simulations of the Madden–Julian oscillation. J Clim 23(2):352–377

    Article  Google Scholar 

  • Emanuel KA (1987) An air–sea interaction model of intraseasonal oscillations in the tropics. J Atmos Sci 44(16):2324–2340

    Article  Google Scholar 

  • Fairall C, Bradley EF, Godfrey J, Wick G, Edson JB, Young G (1996) Cool-skin and warm-layer effects on sea surface temperature. J Geophys Res 101(C1):1295–1308

    Article  Google Scholar 

  • Flatau M, Flatau PJ, Phoebus P, Niiler PP (1997) The feedback between equatorial convection and local radiative and evaporative processes: the implications for intraseasonal oscillations. J Atmos Sci 54(19):2373–2386

    Article  Google Scholar 

  • Gaspar P, Gregoris Y, Lefevre J-M (1990) A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J Geophys Res 95(C9):16179–16193

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462

    Article  Google Scholar 

  • Hendon HH (2000) Impact of air–sea coupling on the Madden–Julian oscillation in a general circulation model. J Atmos Sci 57(24):3939–3952

    Article  Google Scholar 

  • Hendon HH, Liebmann B (1994) Organization of convection within the Madden–Julian oscillation. J Geophys Res Atmos (1984–2012) 99(D4):8073–8083

    Article  Google Scholar 

  • Hendon HH, Salby ML (1994) The life cycle of the Madden–Julian oscillation. J Atmos Sci 51(15):2225–2237

    Article  Google Scholar 

  • Hsu H-H, Weng C-H, Wu C-H (2004) Contrasting characteristics between the northward and eastward propagation of the intraseasonal oscillation during the boreal summer. J Clim 17(4):727–743

    Article  Google Scholar 

  • Hung M-P, Lin J-L, Wang W, Kim D, Shinoda T, Weaver SJ (2013) MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Clim 26(17):6185–6214

    Article  Google Scholar 

  • Inness PM, Slingo JM (2003) Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: comparison with observations and an atmosphere-only GCM. J Clim 16(3):345–364

    Article  Google Scholar 

  • Jiang X, Waliser DE, Xavier PK, Petch J, Klingaman NP, Woolnough SJ, Guan B, Bellon G, Crueger T, DeMott C, Hannay C, Lin H, Hu W, Kim D, Lappen C-L, Lu M–M, Ma H-Y, Miyakawa T, Ridout JA, Schubert SD, Scinocca J, Seo K-H, Shindo E, Song X, Stan C, Tseng W-L, Wang W, Wu T, Wyser K, Wu X, Zhang GJ, Zhu H (2014) Exploring key processes of the Madden–Julian Oscillation (MJO): a joint WGNE MJO task force/GEWEX GASS project on the vertical structure and diabatic processes of the MJO—part I. Climate Simulations. J Geophys Res Atmos (submitted)

  • Kang I-S, Liu F, Ahn M-S, Yang Y-M, Wang B (2013) The role of SST structure in convectively coupled Kelvin–Rossby waves and its implications for MJO formation. J Clim 26(16):5915–5930

  • Kim D, Sperber K, Stern W, Waliser D, Kang I-S, Maloney E, Wang W, Weickmann K, Benedict J, Khairoutdinov M (2009) Application of MJO simulation diagnostics to climate models. J Clim 22(23):6413–6436

    Article  Google Scholar 

  • Kim D, Sobel AH, Maloney ED, Frierson DM, Kang I-S (2011) A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J Clim 24(21):5506–5520

    Article  Google Scholar 

  • Kiranmayi L, Maloney ED (2011) Intraseasonal moist static energy budget in reanalysis data. J Geophys Res 116:D21117. doi:10.1029/2011JD016031

  • Klingaman NP, Woolnough SJ, Weller H, Slingo JM (2011) The impact of finer-resolution air–sea coupling on the intraseasonal oscillation of the Indian monsoon. J Clim 24(10):2451–2468

    Article  Google Scholar 

  • Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19(12):2665–2690

  • Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J Atmos Sci 44(17):2418–2436

    Article  Google Scholar 

  • Liu P, Wang B, Sperber KR, Li T, Meehl GA (2005) MJO in the NCAR CAM2 with the Tiedtke convective scheme. J Clim 18(15):3007–3020

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29(6):1109–1123

    Article  Google Scholar 

  • Maloney ED (2009) The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 22(3):711–729

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (1998) Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J Clim 11(9):2387–2403

    Article  Google Scholar 

  • Maloney ED, Sobel AH (2004) Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J Clim 17(22):4368–4386

    Article  Google Scholar 

  • Marshall AG, Alves O, Hendon HH (2008) An enhanced moisture convergence-evaporation feedback mechanism for MJO air–sea interaction. J Atmos Sci 65(3):970–986

    Article  Google Scholar 

  • Nakazawa T (1988) Tropical super clusters within intraseasonal variations over the western Pacific. J Meteorol Soc Jpn 66(6):823–839

    Google Scholar 

  • Neelin JD, Held IM, Cook KH (1987) Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J Atmos Sci 44(16):2341–2348

    Article  Google Scholar 

  • Nordeng TE (1994) Extended versions of the convective parametrization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. European Centre for Medium-Range Weather Forecasts

  • Paulson CA, Simpson JJ (1981) The temperature difference across the cool skin of the ocean. J Geophys Res 86(C11):11044–11054

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1995) A high-resolution global sea surface temperature climatology. J Clim 8(6):1571–1583

    Article  Google Scholar 

  • Roeckner E (2003) The atmospheric general circulation model ECHAM5: part 1: model description. Max-Planck-Institut fuer Meteorologie, Germany

    Google Scholar 

  • Saunders PM (1967) The temperature at the ocean–air interface. J Atmos Sci 24(3):269–273

    Article  Google Scholar 

  • Shinoda T, Hendon HH (1998) Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Oceans. J Clim 11(10):2668–2685

    Article  Google Scholar 

  • Sperber KR, Gualdi S, Legutke S, Gayler V (2005) The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Clim Dyn 25(2–3):117–140

    Article  Google Scholar 

  • Subramanian AC, Jochum M, Miller AJ, Murtugudde R, Neale RB, Waliser DE (2011) The Madden–Julian oscillation in CCSM4. J Clim 24(24):6261–6282. doi:10.1175/JCLI-D-11-00031.1

    Article  Google Scholar 

  • Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117(8):1779–1800

    Article  Google Scholar 

  • Tsuang B-J, Tu C-Y, Tsai J-L, Dracup JA, Arpe K, Meyers T (2009) A more accurate scheme for calculating Earths-skin temperature. Clim Dyn 32(2–3):251–272

    Article  Google Scholar 

  • Tu C-Y, Tsuang B-J (2005) Cool-skin simulation by a one-column ocean model. Geophys Res Lett 32:L22602. doi:10.1029/2005GL024252

  • Waliser DE, Lau K, Kim J-H (1999) The influence of coupled sea surface temperatures on the Madden–Julian oscillation: a model perturbation experiment. J Atmos Sci 56(3):333–358

    Article  Google Scholar 

  • Wang B, Rui H (1990) Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial-plane. J Atmos Sci 47(4):397–413

    Article  Google Scholar 

  • Watterson I (2002) The sensitivity of subannual and intraseasonal tropical variability to model ocean mixed layer depth. J Geophys Res Atmos (1984–2012) 107 (D2):ACL 12-11–ACL 12-15

  • Watterson I, Syktus J (2007) The influence of air–sea interaction on the Madden–Julian oscillation: the role of the seasonal mean state. Clim Dyn 28(7–8):703–722

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132(8):1917–1932

    Article  Google Scholar 

  • Woolnough SJ, Slingo JM, Hoskins BJ (2000) The relationship between convection and sea surface temperature on intraseasonal timescales. J Clim 13(12):2086–2104

    Article  Google Scholar 

  • Woolnough S, Vitart F, Balmaseda M (2007) The role of the ocean in the Madden–Julian oscillation: implications for MJO prediction. Q J R Meteorol Soc 133(622):117–128

    Article  Google Scholar 

  • Wu J (1985) On the cool skin of the ocean. Bound-Layer Meteorol 31(2):203–207

    Article  Google Scholar 

  • Yanai M, Chen B, Tung W-w (2000) The Madden–Julian oscillation observed during the TOGA COARE IOP: global view. J Atmos Sci 57(15):2374–2396

    Article  Google Scholar 

  • Zhang C (2005) Madden–Julian Oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

  • Zhang GJ, Mu M (2005) Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J Clim 18(19):4046–4064

    Article  Google Scholar 

  • Zhang C, Dong M, Gualdi S, Hendon HH, Maloney ED, Marshall A, Sperber KR, Wang W (2006) Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn 27(6):573–592

    Article  Google Scholar 

  • Zhou L, Neale RB, Jochum M, Murtugudde R (2012) Improved Madden–Julian oscillations with improved physics: the impact of modified convection parameterizations. J Clim 25(4):1116–1136

    Article  Google Scholar 

  • Zhu H, Hendon H, Jakob C (2009) Convection in a parameterized and superparameterized model and its role in the representation of the MJO. J Atmos Sci 66(9):2796–2811

    Article  Google Scholar 

Download references

Acknowledgments

The Deutsches Klimarechenzentrum, the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen and Taiwan/NCHC provided computing resources. The Deutsches Forschungsgemeinschaft under the Emmy Noether-Programm (KE 1471/2-1), the German BMBF NORDATLANTIK project, DFG-NSC international cooperation Grant, and EU SUMO (266722) and, STEPS (PCIG10-GA-2011-304243), and PREFACE (603521) projects provided financial support. The National Science Council, Taiwan, also supported the work (Grant NSC-100-2119-M-001-029-MY5; NSC 99-2111-M-005-001-MY3; NSC 102-2627-B-005-006-). We are grateful to the National Center for High-performance Computing for computer time and facilities. The Max Planck Institute for Meteorology provided the ECHAM5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Ling Tseng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseng, WL., Tsuang, BJ., Keenlyside, N.S. et al. Resolving the upper-ocean warm layer improves the simulation of the Madden–Julian oscillation. Clim Dyn 44, 1487–1503 (2015). https://doi.org/10.1007/s00382-014-2315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2315-1

Keywords

Navigation