Skip to main content
Log in

Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

As a form of therapeutic angiogenesis, we sought to investigate the safety and efficacy of a sustained-release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel in patients with critical limb ischemia (CLI). We conducted a phase I–IIa study that analyzed 10 CLI patients following a 200-μg intramuscular injection of bFGF-incorporated gelatin hydrogel microspheres into the ischemic limb. Primary endpoints were safety and transcutaneous oxygen pressure (TcO2) at 4 and 24 weeks after treatment. During the follow-up, there was no death or serious procedure-related adverse event. After 24 weeks, TcO2 (28.4 ± 8.4 vs. 46.2 ± 13.0 mmHg for pretreatment vs after 24 weeks, p < 0.01) showed significant improvement. Regarding secondary endpoints, the distance walked in 6 min (255 ± 105 vs. 318 ± 127 m, p = 0.02), the Rutherford classification (4.4 ± 0.5 vs. 3.1 ± 1.4, p = 0.02), the rest pain scale (1.7 ± 1.0 vs. 1.2 ± 1.3, p = 0.03), and the cyanotic scale (2.0 ± 1.1 vs. 0.9 ± 0.9, p < 0.01) also showed improvement. The blood levels of bFGF were within the normal range in all patients. A subanalysis of patients with arteriosclerosis obliterans (n = 7) or thromboangiitis obliterans (Buerger’s disease) (n = 3) revealed that TcO2 had significantly improved in both subgroups. TcO2 did not differ between patients with or without chronic kidney disease. The sustained release of bFGF from biodegradable gelatin hydrogel may offer a safe and effective form of angiogenesis for patients with CLI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45:S5–56

    Article  PubMed  Google Scholar 

  2. Takahara M, Kaneto H, Katakami N, Iida O, Matsuoka T, Shimomura I (2014) Effect of sarpogrelate treatment on the prognosis after endovascular therapy for critical limb ischemia. Heart Vessels 29:563–567

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yan BP, Moran D, Hynes BG, Kiernan TJ, Yu CM (2011) Advances in endovascular treatment of critical limb ischemia. Circ J 75:756–765

    Article  PubMed  Google Scholar 

  4. Grisham J (2000) Inquiry into gene therapy widens. Nat Biotechnol 18:254–255

    Article  CAS  PubMed  Google Scholar 

  5. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  6. Gospodarowicz D (1974) Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249:123–127

    Article  CAS  PubMed  Google Scholar 

  7. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G (1987) Structural characterization and biological functions of fibroblast growth factor. Endocr Rev 8:95–114

    Article  CAS  PubMed  Google Scholar 

  8. Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301

    Article  PubMed  Google Scholar 

  9. Kushibiki T, Tomoshige R, Fukunaka Y, Kakemi M, Tabata Y (2003) In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J Control Release 90:207–216

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Marui A, Sakaguchi H, Esaki J, Arai Y, Hirose K, Bir SC, Horiuchi H, Maruyama T, Ikeda T, Tabata Y, Komeda M (2008) Sustained release of prostaglandin E1 potentiates the impaired therapeutic angiogenesis by basic fibroblast growth factor in diabetic murine hindlimb ischemia. Circ J 72:1693–1699

    Article  PubMed  Google Scholar 

  11. Bir SC, Fujita M, Marui A, Hirose K, Arai Y, Sakaguchi H, Huang Y, Esaki J, Ikeda T, Tabata Y, Komeda M (2008) New therapeutic approach for impaired arteriogenesis in diabetic mouse hindlimb ischemia. Circ J 72:633–640

    Article  CAS  PubMed  Google Scholar 

  12. Hirose K, Marui A, Arai Y, Nomura T, Kaneda K, Kimura Y, Ikeda T, Fujita M, Mitsuyama M, Tabata Y, Komeda M (2007) A novel approach to reduce catheter-related infection using sustained-release basic fibroblast growth factor for tissue regeneration in mice. Heart Vessels 22:261–267

    Article  PubMed  Google Scholar 

  13. Doi K, Ikeda T, Marui A, Kushibiki T, Arai Y, Hirose K, Soga Y, Iwakura A, Ueyama K, Yamahara K, Itoh H, Nishimura K, Tabata Y, Komeda M (2007) Enhanced angiogenesis by gelatin hydrogels incorporating basic fibroblast growth factor in rabbit model of hind limb ischemia. Heart Vessels 22:104–108

    Article  PubMed  Google Scholar 

  14. Arai Y, Fujita M, Marui A, Hirose K, Sakaguchi H, Ikeda T, Tabata Y, Komeda M (2007) Combined treatment with sustained-release basic fibroblast growth factor and heparin enhances neovascularization in hypercholesterolemic mouse hindlimb ischemia. Circ J 71:412–417

    Article  CAS  PubMed  Google Scholar 

  15. Hirose K, Fujita M, Marui A, Arai Y, Sakaguchi H, Huang Y, Chandra S, Tabata Y, Komeda M (2006) Combined treatment of sustained-release basic fibroblast growth factor and sarpogrelate enhances collateral blood flow effectively in rabbit hindlimb ischemia. Circ J 70:1190–1194

    Article  CAS  PubMed  Google Scholar 

  16. Marui A, Kanematsu A, Yamahara K, Doi K, Kushibiki T, Yamamoto M, Itoh H, Ikeda T, Tabata Y, Komeda M (2005) Simultaneous application of basic fibroblast growth factor and hepatocyte growth factor to enhance the blood vessels formation. J Vasc Surg 41:82–90

    Article  PubMed  Google Scholar 

  17. Nakajima H, Sakakibara Y, Tambara K, Iwakura A, Doi K, Marui A, Ueyama K, Ikeda T, Tabata Y, Komeda M (2004) Therapeutic angiogenesis by the controlled release of basic fibroblast growth factor for ischemic limb and heart injury: toward safety and minimal invasiveness. J Artif Organs 7:58–61

    Article  CAS  PubMed  Google Scholar 

  18. Iwakura A, Tabata Y, Koyama T, Doi K, Nishimura K, Kataoka K, Fujita M, Komeda M (2003) Gelatin sheet incorporating basic fibroblast growth factor enhances sternal healing after harvesting bilateral internal thoracic arteries. J Thorac Cardiovasc Surg 126:1113–1120

    Article  CAS  PubMed  Google Scholar 

  19. Marui A, Tabata Y, Kojima S, Yamamoto M, Tambara K, Nishina T, Saji Y, Inui K, Hashida T, Yokoyama S, Onodera R, Ikeda T, Fukushima M, Komeda M (2007) A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I–IIa study. Circ J 71:1181–1186

    Article  CAS  PubMed  Google Scholar 

  20. Tabata Y, Hijikata S, Ikada Y (1994) Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31:189–199

    Article  CAS  Google Scholar 

  21. Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y (1999) Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 10:79–94

    Article  CAS  PubMed  Google Scholar 

  22. Montgomery PS, Gardner AW (1998) The clinical utility of a six-minute walk test in peripheral arterial occlusive disease patients. J Am Geriatr Soc 46:706–711

    Article  CAS  PubMed  Google Scholar 

  23. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN (1997) Recommended standards for reports dealing with lower extremity ischemia: revised version. J Vasc Surg 26:517–538

    Article  CAS  PubMed  Google Scholar 

  24. Bunt TJ, Holloway GA (1996) TcPO2 as an accurate predictor of therapy in limb salvage. Ann Vasc Surg 10:224–227

    Article  CAS  PubMed  Google Scholar 

  25. Baumgartner I, Schainfeld R, Graziani L (2005) Management of peripheral vascular disease. Annu Rev Med 56:249–272

    Article  CAS  PubMed  Google Scholar 

  26. Marston WA, Davies SW, Armstrong B, Farber MA, Mendes RC, Fulton JJ, Keagy BA (2006) Natural history of limbs with arterial insufficiency and chronic ulceration treated without revascularization. J Vasc Surg 44:108–114

    Article  PubMed  Google Scholar 

  27. Yang P, Guo T, Wang W, Peng YZ, Wang Y, Zhou P, Luo ZL, Cai HY, Zhao L, Yang HW (2013) Randomized and double-blind controlled clinicaltrial of extracorporeal cardiac shock wave therapy for coronary heart disease. Heart Vessels 28:284–291

    Article  PubMed  Google Scholar 

  28. Sawa Y (2013) Current status of myocardial regeneration therapy. Gen Thorac Cardiovasc Surg 61:17–23

    Article  PubMed  Google Scholar 

  29. Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, Morishita R, Annex BH (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118:58–65

    Article  CAS  PubMed  Google Scholar 

  30. Shigematsu H, Yasuda K, Iwai T, Sasajima T, Ishimaru S, Ohashi Y, Yamaguchi T, Ogihara T, Morishita R (2010) Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther 17:1152–1161

    Article  CAS  PubMed  Google Scholar 

  31. Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Bell E (2011) Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet 377:1929–1937

    Article  CAS  PubMed  Google Scholar 

  32. Lee HC, An SG, Lee HW, Park JS, Cha KS, Hong TJ, Park JH, Lee SY, Kim SP, Kim YD, Chung SW, Bae YC, Shin YB, Kim JI, Jung JS (2012) Safety and effect of adipose tissue-derived stem cell implantation in patients with critical limb ischemia: a pilot study. Circ J 76:1750–1760

    Article  CAS  PubMed  Google Scholar 

  33. Chan SY, Li K, Piccotti JR, Louie MC, Judge TA, Turka LA, Eichwald EJ, Bishop DK (1999) Tissue-specific consequences of the anti-adenoviral immune response: implications for cardiac transplants. Nat Med 5:1143–1149

    Article  CAS  PubMed  Google Scholar 

  34. Mughal NA, Russell DA, Ponnambalam S, Homer-Vanniasinkam S (2012) Gene therapy in the treatment of peripheral arterial disease. Br J Surg 99:6–15

    Article  CAS  PubMed  Google Scholar 

  35. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P (1992) Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg 16:181–191

    Article  CAS  PubMed  Google Scholar 

  36. Strutz F (2009) The role of FGF-2 in renal fibrogenesis. Front Biosci 1:125–131

    Article  Google Scholar 

  37. Tabata Y, Nagano A, Ikada Y (1999) Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5:127–138

    Article  CAS  PubMed  Google Scholar 

  38. Tabata Y, Ikada Y (1999) Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175

    Article  CAS  PubMed  Google Scholar 

  39. Fadini GP, Agostini C, Avogaro A (2010) Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 209:10–17

    Article  CAS  PubMed  Google Scholar 

  40. Idei N, Soga J, Hata T, Fujii Y, Fujimura N, Mikami S, Maruhashi T, Nishioka K, Hidaka T, Kihara Y, Chowdhury M, Noma K, Taguchi A, Chayama K, Sueda T, Higashi Y (2011) Autologous bone-marrow mononuclear cell implantation reduces long-term major amputation risk in patients with critical limb ischemia: a comparison of atherosclerotic peripheral arterial disease and Buerger disease. Circ Cardiovasc Interv 4:15–25

    Article  PubMed  Google Scholar 

  41. Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y, Ito M, Saito Y, Uemura S, Suzuki H, Fukumoto S, Yamamoto Y, Onodera R, Teramukai S, Fukushima M, Matsubara H (2008) Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (therapeutic angiogenesis by cell transplantation [TACT] trial) in patients with chronic limb ischemia. Am Heart J 156:1010–1018

    Article  PubMed  Google Scholar 

  42. Casserly IP (2008) Interventional management of critical limb ischemia in renal patients. Adv Chronic Kidney Dis 15:384–395

    Article  PubMed  Google Scholar 

  43. Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J, Sequeira R, Kent CK, Bacchetta M, Goldman C, Salenius JP, Schmieder FA, Pilsudski R (2002) Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 35:930–936

    Article  PubMed  Google Scholar 

  44. Morishita R, Aoki M, Hashiya N, Makino H, Yamasaki K, Azuma J, Sawa Y, Matsuda H, Kaneda Y, Ogihara T (2004) Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 44:203–209

    Article  CAS  PubMed  Google Scholar 

  45. Dong Z, Chen B, Fu W, Wang Y, Guo D, Wei Z, Xu X, Mendelsohn FO (2013) Transplantation of purified CD34+ cells in the treatment of critical limb ischemia. J Vasc Surg 58:404–411

    Article  PubMed  Google Scholar 

  46. Kinoshita M, Fujita Y, Katayama M, Baba R, Shibakawa M, Yoshikawa K, Katakami N, Furukawa Y, Tsukie T, Nagano T, Kurimoto Y, Yamasaki K, Handa N, Okada Y, Kuronaka K, Nagata Y, Matsubara Y, Fukushima M, Asahara T, Kawamoto A (2012) Long-term clinical outcome after intramuscular transplantation of granulocyte colony stimulating factor-mobilized CD34 positive cells in patients with critical limb ischemia. Atherosclerosis 224:440–445

    Article  CAS  PubMed  Google Scholar 

  47. Murphy MP, Lawson JH, Rapp BM, Dalsing MC, Klein J, Wilson MG, Hutchins GD, March KL (2011) Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J Vasc Surg 53:1565–1574

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Health Labour Sciences Research Grant (No. 851110600024). There are no relationships with industry. The authors thank Kazuhiro Yamazaki, Kenji Minakata, Hiroshi Tsuneyoshi (Department of Cardiovascular Surgery, Kyoto University Graduate School of Medicine, Kyoto University Hospital); Machiko Oka, Hideaki Toyokuni (Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital); Tatsuya Itoh (Department of Experimental Therapeutics, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital); Harue Tada (Department of Data Science Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital); Kumi Mukai (Department of Clinical Innovative Medicine Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital); Makoto Matsui (Department of Biomaterials, Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University); Takuro Yuge (Kaken Pharmaceutical Co., Ltd.); Senri Miwa (Department of Cardiovascular Surgery, Okamura Memorial Hospital).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuzo Sakata.

Additional information

M. Kumagai and A. Marui have equally contributed to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumagai, M., Marui, A., Tabata, Y. et al. Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia. Heart Vessels 31, 713–721 (2016). https://doi.org/10.1007/s00380-015-0677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-015-0677-x

Keywords

Navigation