Skip to main content
Log in

Physical activity, adiponectin, and cardiovascular structure and function

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Physical activity (PA) may modify cardiovascular structure and function as well as insulin sensitivity and level of plasma adipokines in relation to its extent, duration, and intensity. To evaluate the associations of average daily PA and bouts of moderate-to-vigorous-intensity PA with cardiovascular and metabolic measures, 45 healthy volunteers (mean age = 42 ± 9 years) not involved in regular intensive exercise training and competitive sport activity underwent the following examinations: (1) accelerometer monitoring of ambulatory movements (average monitoring time = 6.1 ± 1.3 days); (2) complete carotid and cardiac ultrasound; (3) measurement of carotid-femoral pulse-wave velocity; (4) anthropometric measurements; (5) euglycemic hyperinsulinemic clamp; and (6) assessment of plasma levels of leptin, adiponectin, and high-sensitivity C-reactive protein (hsCRP). Average PA measured by accelerometer correlated with carotid beta-stiffness index (inversely) and with longitudinal systolic myocardial velocity (directly), independently of age, anthropometric, hemodynamic, and metabolic parameters. Subjects with periods of moderate-to-vigorous-intensity PA lasting at least 10 min (n = 28) had higher left ventricular (LV) mass index and lower plasma adiponectin, leptin, and hsCRP (P < 0.05 for all) compared with those who spent the monitoring time only in sedentary and light-intensity PA (n = 17). Minutes per day spent in moderate-to-vigorous PA correlated with LV mass index (directly) and with plasma adiponectin (inversely). Plasma adiponectin was an independent determinant of LV mass, together with body surface area, stroke volume, and systolic blood pressure (cumulative r 2 = 0.80). We conclude that in healthy subjects, average daily PA is independently related to longitudinal systolic myocardial function and to local carotid stiffness. Bouts of moderate-to-vigorous PA seem to induce LV mass increase, which may be partially related to a decrease in plasma adiponectin level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Naylor LN, George K, O’Driscoll G, Green DJ (2008) The athlete’s heart. A contemporary appraisal of the ‘Morganroth Hypothesis’. Sports Med 38:69–90

    Article  PubMed  Google Scholar 

  2. de Simone G, Devereux RB, Kimball TR, Mureddu F, Roman MJ, Cataldo F, Daniels S (1998) Interaction between body size and cardiac workload. Influence of left ventricular mass during body growth and adulthood. Hypertension 31:1077–1082

    Article  PubMed  Google Scholar 

  3. Bocalini DS, Carvalho EV, de Sousa AF, Levy RF, Tucci PJ (2010) Exercise training-induced enhancement in myocardial mechanics is lost after 2 weeks of detraining in rats. Eur J Appl Physiol 109:909–914

    Article  PubMed  Google Scholar 

  4. Kemi OJ, Ceci M, Condorelli G, Smith GL, Wisloff U (2008) Myocardial sarcoplasmic reticulum Ca2+ ATPase function is increased by aerobic interval training. Eur J Cardiovasc Prev Rehabil 15:145–148

    Article  PubMed  Google Scholar 

  5. Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG (2001) Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol 88:53–58

    Article  PubMed  CAS  Google Scholar 

  6. Kozakova M, Palombo C, Nolan JJ, Konrad T, Balkau B, Investigators RISC (2010) Effect of sedentary behavior and vigorous physical activity on segment-specific carotid wall thickness and its progression in a healthy population. Eur Heart J 31:1511–1519

    Article  PubMed  Google Scholar 

  7. Van de Laar R, Ferreira I, van Melchen W, Prins MH, Twisk JW, Stehouwer CD (2010) Lifetime vigorous but not light-to-moderate habitual physical activity impacts favorably on carotid stiffness in young adults. The Amsterdam Growth and Health Longitudinal Study. Hypertension 55:33–39

    Article  PubMed  Google Scholar 

  8. Balkau B, Mhamdi L, Oppert JM, Nolan J, Golay A, Porcelatti F, Laakso M, Ferrannini E, EGIR-RISC Study group (2008) Physical activity and insulin sensitivity: the RISC study. Diabetes 57:2613–2618

    Article  PubMed  CAS  Google Scholar 

  9. Emken BA, Richey J, Belcher B, Ya-Wen H, Spruijt-Metz D (2010) Objectively measured PA is negatively associated with plasma adiponectin levels in minority female youth. Int J Pediatr Endocrinol 2010:846070

    Article  PubMed  Google Scholar 

  10. Metcalf BS, Jeffery AN, Hosking J, Voss LD, Sattar N, Wilkin TJ (2009) Objectively measured physical activity and its association with adiponectin and other novel metabolic markers: a longitudinal study in children (EarlyBird 38). Diabetes Care 32:468–473

    Article  PubMed  CAS  Google Scholar 

  11. LeCheminant J, Tucker L, Rusell K (2011) Physical activity and C-reactive protein levels: the confounding role of body fat. J Phys Act Health 8:481–487

    PubMed  Google Scholar 

  12. Ho CT, Lin CC, Hsu HS, Liu CS, Davidson LE, Li TC, Li CI, Lin WY (2011) Arterial stiffness is strongly associated with insulin resistance in Chinese—a population-based study (Taichung Community Health Study, TCHS). J Atheroscler Thromb 18:122–130

    Article  PubMed  CAS  Google Scholar 

  13. Rider OJ, Petersen SE, Francis JM, Ali MK, Hudsmisth LE, Robinson MR, Clarke K, Neubauer S (2011) Ventricular hypertrophy and cavity dilation in relation to body mass index in women with uncomplicated obesity. Heart 97:203–208

    Article  PubMed  Google Scholar 

  14. Sam F, Duhaney TA, Sato K, Wilson RM, Ohashi K, Sono-Romanelli S, Higuchi A, De Silva DS, Qin F, Walsh K, Ouchi N (2010) Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure. Endocrinology 151:322–331

    Article  PubMed  CAS  Google Scholar 

  15. Provan SA, Angel K, Semb AG, Mowinckel P, Agewall S, Atar D, Kvien TK (2011) Early prediction of increased arterial stiffness in patients with chronic inflammation: a 15-year follow-up study in 108 patients with rheumatoid arthritis. J Rheumatol 38:606–612

    Article  PubMed  Google Scholar 

  16. Hagströmer M, Oja P, Sjöström M (2005) The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9:755–762

    Google Scholar 

  17. Freedson PS, Melanson E, Sirard J (1998) Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 30:777–781

    Article  PubMed  CAS  Google Scholar 

  18. Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA, Macera CA, Heath GW, Thompson PD, Bauman A (2007) Physical activity and public health. Updated recommendation for adults from the American College of Sport Medicine and the American Heart Association. Circulation 116:1081–1093

    Article  PubMed  Google Scholar 

  19. Grundy SM, Pasternak R, Greenland P, Smith S Jr, Fuster V (1999) Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 100:1481–1492

    Article  PubMed  CAS  Google Scholar 

  20. Ferrannini E, Balkau B, Coppack SW, Dekker JM, Mari A, Nolan J, Walker M, Natali A, Beck-Nielsen H, Investigators RISC (2007) Insulin resistance, insulin response, and obesity as indicators of metabolic risk. J Clin Endocrinol Metab 92:2885–2892

    Article  PubMed  CAS  Google Scholar 

  21. Andersen KK, Frystyk J, Wolthers OD, Heuck C, Flyvbjerg A (2007) Gender differences of oligomers and total adiponectin during puberty: a cross-sectional study of 859 Danish school children. J Clin Endocrinol Metab 92:1857–1862

    Article  PubMed  CAS  Google Scholar 

  22. Devereux RB, Lutas EM, Casale PN, Kliegfield P, Eisenberg RR, Hammond IW, Miller D, Reis G, Alderman MH, Laragh JH (1986) Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458

    Article  PubMed  CAS  Google Scholar 

  23. Chahal NS, Lim TK, Jain TK, Chambers JC, Kooner JS, Senior R (2010) Normative reference values for tissue Doppler imaging parameters of left ventricular function: a population-based study. Eur J Echocardiogr 11:51–56

    Article  PubMed  Google Scholar 

  24. Liu J, Cao TS, Duam YY, Yang YL, Yuam LJ (2011) Effect of cold pressor-induced sympathetic stimulation on the mechanical properties of common carotid and femoral arteries in healthy males. Heart Vessels 26:214–221

    Article  PubMed  CAS  Google Scholar 

  25. Reference Values C for Arterial Stiffness’ Collaboration (2010) Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: establishing normal and reference values. Eur Heart J 31:2338–2350

    Article  Google Scholar 

  26. Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N (2008) Objectively measured sedentary time, physical activity and metabolic risk. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 31:369–371

    Article  PubMed  Google Scholar 

  27. Ekelund U, Sepp H, Brage S, Becker W, Jakes R, Hennings M, Wareham NJ (2006) Criterion-related validity of the last 7-day, short form of the International Physical Activity Questionnaire in Swedish adult. Public Health Nutr 9:258–265

    Article  PubMed  Google Scholar 

  28. Kurtze N, Rangul V, Hustvedt B-E (2008) Reliability and validity of the international physical activity questionnaire in the Nord-Trøndelag health study (HUNT) population of men. BMC Med Res Methodol 8:63–71

    Article  PubMed  Google Scholar 

  29. Kozakova M, Palombo C, Mhamdi L, Konrad T, Nilsson P, Staehr PB, Paterni M, Balkau B, Investigators RISC (2007) Habitual physical activity and vascular aging in a young to middle-age population at low cardiovascular risk. Stroke 38:2549–2555

    Article  PubMed  Google Scholar 

  30. Florescu M, Stoicescu C, Magda S, Petcu I, Radu M, Palombo C, Cinteza M, Lichiardopol R, Vinereanu D (2010) “Supranormal” cardiac function in athletes related to better arterial and endothelial function. Echocardiography 27:659–667

    Article  PubMed  Google Scholar 

  31. de Cássia Cypriano Ervati Pinter R, Padilha AS, de Oliveira E, Vassallo DV, de Fucio Lizardo JH (2008) Cardiovascular adaptive responses in rats submitted to moderate resistance training. Eur J Appl Physiol 103:605–613

    Article  PubMed  Google Scholar 

  32. Shibata R, Ouchi N, Ito M, Kihara S, Shiojima I, Pimentel DR, Kumada M, Satp K, Schiekofer S, Ohashi K, Funahashi T, Colucci WS, Walsh K (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nature 10:1384–1389

    Article  CAS  Google Scholar 

  33. Chan AYM, Soltys CLM, Young ME, Proud CG, Dyck JRB (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in cardiac myocytes. J Biol Chem 279:32771–32779

    Article  PubMed  CAS  Google Scholar 

  34. Gando Y, Yamamoto K, Murakami H, Ohmori Y, Kawakami R, Sanada K, Higuchi M, Tabata I, Miyachi M (2010) Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension 56:540–546

    Article  PubMed  CAS  Google Scholar 

  35. Henry RM, Kostense PJ, Spijkerman AM, Dekker JM, Nijpels G, Heine RJ, Kamp O, Westerhof N, Bouter LM, Stehouwer CD, Study Hoorn (2003) Arterial stiffness increases with deteriorating glucose tolerance status: the Hoorn Study. Circulation 107:2089–2095

    Article  PubMed  Google Scholar 

  36. van Elderen SG, Brandts A, Westenberg JJ, van der Grond J, Tamsma JT, van Buchem MA, Romijn JA, Kroft LJ, Smit JW, de Roos A (2010) Aortic stiffness is associated with cardiac function and cerebral small vessel disease in patients with type 1 diabetes mellitus: assessment by magnetic resonance imaging. Eur Radiol 20:1132–1138

    Article  PubMed  Google Scholar 

  37. Eichhorn EJ, Willard JE, Alvarez L, Kim AS, Glaman DB, Risser RC, Grayburn PA (1992) Are contraction and relaxation coupled in patients with and without heart failure? Circulation 85:2132–2139

    Article  PubMed  CAS  Google Scholar 

  38. Kozàkovà M, Malshi E, Morizzo C, Pedri S, Santini F, Biolo G, Pagani M, Palombo C (2011) Impact of prolonged cardiac unloading on left ventricular mass and longitudinal myocardial performance: an experimental bed rest study in humans. J Hypertens 29:137–143

    Article  PubMed  Google Scholar 

  39. Koh C, Hong WJ, Wong SJ, Cheung YF (2010) Systolic-diastolic coupling of myocardial deformation of the left ventricle in children with left ventricular noncompaction. Heart Vessels 25:493–499

    Article  PubMed  CAS  Google Scholar 

  40. Paini A, Boutouyrie P, Calvet D, Tropeano AI, Laloux B, Laurent S (2006) Carotid and aortic stiffness: determinants of discrepancies. Hypertension 47:371–376

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Kozakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozakova, M., Balkau, B., Morizzo, C. et al. Physical activity, adiponectin, and cardiovascular structure and function. Heart Vessels 28, 91–100 (2013). https://doi.org/10.1007/s00380-011-0215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-011-0215-4

Keywords

Navigation