Skip to main content
Log in

Application of artificial neural networks to rainfall forecasting in Queensland, Australia

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology’s Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000a: Artificial neural networks in hydrology. I: Preliminary concepts. J Hydrol Eng., 5, 115–123.

    Article  Google Scholar 

  • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000b: Artificial neural networks in hydrology. II: Hydrological applications. J. Hydrol. Eng., 5, 124–137.

    Article  Google Scholar 

  • Bilgili, M., and B. Sahin, 2010: Prediction of Long-term Monthly Temperature and Rainfall in Turkey. Energy Sources, 32, 60–71.

    Google Scholar 

  • Braganza, K., J. L. Gergis, S. B. Power, J. S. Risbey, A. M. Fowler, 2009: A multiproxy index of the El Nino-Southern Oscillation, A. D. 1525–1982. J. Geophys. Res., 114, D05106.

    Article  Google Scholar 

  • Castellani, L., I. Becchi, and F. Castelli, 1996: Rainfall Frequency and Seasonality Identification through Artificial Neural Networks. Meccanica, 31, 117–127.

    Article  Google Scholar 

  • Chakraverty, S., and P. Gupta. 2008: Comparison of neural network configurations in the long-range forecast of southwest monsoon rainfall over India. Neural Computing & Applications, 17, 187–192.

    Article  Google Scholar 

  • Chattopadhyay, S., and G. Chattopadhyay, 2008: Comparative study among different neural net learning algorithms applied to rainfall time series. Meteorological Applications, 15, 273–280.

    Article  Google Scholar 

  • Day, K. A., D. G. Ahrens, and A. Peacock, 2010: Seasonal Pacific Ocean Temperature Analysis-1 (SPOTA-1) as at November 1, 2010. Report issued by the Queensland Climate Change Centre of Excellence, Queensland Government, Brisbane, Australia, 2pp. [Available online from http://www.longpaddock.qld.gov.au/spota1-getpassword.html]

  • Elman, J. L., 1990: Finding structure in time. Cognitive Science, 14, 179–211.

    Article  Google Scholar 

  • Erlykin, A. D., G. Gyalai, K. Kudela, T. Sloan, and A.W. Wolfendale, 2009: On the correlation between cosmic ray intensity and cloud cover. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1794–1806.

    Article  Google Scholar 

  • Firth, L., M. L. Hazelton, and E. P. Campbell, 2005: Predicting the Onset of Australian Winter Rainfall by Nonlinear Classification. J. Climate, 18, 772–781.

    Article  Google Scholar 

  • Freiwan, M., and H. K. Cigizoglu, 2005: Prediction of total monthly rainfall in Jordan using feed-forward back-propagation method. Fresenius Environmental Bulletin, 14, 142–151.

    Google Scholar 

  • French, M. N., W. F. Krajewski, and R. R. Cuykendall, 1992: Rainfall forecasting in space and time using a neural network. J. Hydrol., 137, 1–31.

    Article  Google Scholar 

  • Frohlich, C., 2000: Observations of irradiance variations. Space Science Rev., 94, 15–24.

    Article  Google Scholar 

  • Giles, C. L., S. Lawrence, and A. C. Tsoi, 1997: Rule inference for financial prediction using recurrent neural networks. Proc. IEEE/IAFE Conf. on Computational Intelligence for Financial Engineering, IEEE Press, Piscataway, NJ, 253–259.

    Google Scholar 

  • Gholizadeh, M. H., and M. Darand, 2009: Forecasting Precipitation with Artificial Neural Networks (Case Study: Tehran). J. Appl. Sci., 9, 1786–1790.

    Article  Google Scholar 

  • Guhathakurta, P, M. Rajeevan, and V. Thapliyal, 1999: Long range forecasting indian summer monsoon rainfall by a hybrid principal component neural network model. Meteorology and Atmospheric Physics, 71, 255–266.

    Article  Google Scholar 

  • Hartmann, H., S. Beckerb, and L. King. 2008: Predicting summer rainfall in the Yangtze River basin with neural networks. Int. J. Climatol. 28, 925–936.

    Article  Google Scholar 

  • Htike, K. K., and O. O. Khalifa, 2010: Rainfall forecasting models using focused time-delay neural networks. Int. Conf. on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 1–6. [Available online at http://dx.doi.org/10.1109/ICCCE.2010.5556806]

    Google Scholar 

  • Hudson, D., O. Alves, H. H. Hendon, and A. G. Marshall, 2011: Bridging the gap between weather and seasonal forecasting: Intraseasonal forecasting for Australia. Quart. J. Roy. Meteor. Soc. 137, 673–689.

    Article  Google Scholar 

  • Hurst, D., 2011: Three-quarters of Queensland a disaster zone. Brisbane Times, Fairfax Media. [Available online at http://www.brisbanetimes.com.au/environment/weather/threequarters-of-queensland-adisaster-zone-20110111-19mf8.html].

  • Iseri, Y., G. C. Dandy, H. R. Maier, A. Kawamura, and K. Jinno, 2005: Medium term forecasting of rainfall using artificial neural Networks. Modelling and Simulation Society of Australia and New Zealand, A. Zerger and R. M. Argent, Eds., 1834–1840.

  • Johns, T. C., and Coauthors, 2006: The New Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 1327–1353.

    Article  Google Scholar 

  • Karamouz, M., S. Razavi, and S. Araghinejad, 2008: Long-lead seasonal rainfall forecasting using timedelay recurrent neural networks: A case study. Hydrological Processes, 22, 229–241.

    Article  Google Scholar 

  • Kiem, A., S. Franks, and G. Kuczera, 2003: Multi-decadal variability of flood risk. Geophys. Res. Lett., 30(2), 1–7.

    Article  Google Scholar 

  • Kirkby, J., and Coauthors, 2011: Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476(7361), 429–435.

    Article  Google Scholar 

  • Kirono, D. G. C, F. H. S. Chiew, and D. M. Kent 2010: Identification of best predictors for forecasting seasonal rainfall and runoff in Australia. Hydrological Processes, 24, 1237–1247.

    Google Scholar 

  • Kulshretha, M. S., and R. K. George, 2007: Prediction of annual rainfall by double Fourier series and artificial neural network. Neural, Parallel & Scientific Computations, 15, 539–546.

    Google Scholar 

  • Laken, B. A., D. R. Kniveton, and M. R. Frogley, 2010: Cosmic rays linked to rapid mid-latitude cloud changes. Atmos. Chem. Phys., 10, 10941–10948.

    Article  Google Scholar 

  • Long, J., L. Ying, and L. Zhenshan, 1997: Comparison of long-term forecasting of June-August Rainfall over Changjiang-Huaihe Valley. Adv. Atmos. Sci., 14, 87–92.

    Article  Google Scholar 

  • Luk, K. C., J. E. Ball, and A. Sharma, 2000: A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol., 227, 56–65.

    Article  Google Scholar 

  • Luk, K. C., J. E. Ball, and A. Sharma, 2001: An application of artificial neural networks for rainfall forecasting, Mathematical and Computer Modelling., 33, 883–699.

    Article  Google Scholar 

  • Marshal, A. G., D. Hudson, M. C. Wheeler, H. H. Hendon, and O. Alves, 2011: Simulation and prediction of the Southern Annular Mode and its influence on Australian intra-season climate in POAMA. Climate Dyn.. (in press)

  • McBride, J. L., and N. Nicholls, 1983: Seasonal relationships between Australian rainfall and the Southern Oscillation. Mon. Wea. Rev., 111, 1998–2004.

    Article  Google Scholar 

  • Meinke, H., and R. Stone, 2005: Seasonal and interannual climate forecasting: the new tool for increasing preparedness to climate variability and change in agricultural planning and operations. Climate Change., 70, 221–253.

    Article  Google Scholar 

  • Micevski, T., S. Franks, and G. Kuczera, 2006: Multidecadal variability in coastal eastern Australian flood data. J. Hydrol., 327(1–2), 219–225.

    Article  Google Scholar 

  • Michaelides, S. C., C. S. Pattichis, and G. Kleovoulou, 2001: Classification of rainfall variability by using artificial neural networks. Int. J. Climatology, 21, 1401–1414.

    Article  Google Scholar 

  • Mozer, M. C., and P. Smolensky, 1989: Skeletonization: a technique for trimming the fat from a network via relevance assessment. Advances in Neural Information Processing Systems 1, D. Touretzky, ED., Morgan Kaufmann, San Monteo, California, 107–115.

    Google Scholar 

  • Nasseri, M., K. Asghari, and M. J. Abedini, 2008: Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems With ApplicationsS, 35, 1415–1421.

    Article  Google Scholar 

  • Navone, H. D., and H. A. Ceccatto, 1994: Predicting Indian monsoon rainfall: A neural network approach. Climate Dyn., 10, 305–312.

    Article  Google Scholar 

  • Nicholls, N, B. Lavery, C. Fredericksen, W. Drosdowsky, and S. Torok, 1996: Recent apparent changes in relationships between the El Nino-southern oscillation and Australian rainfall and temperature. Geophys. Res. Lett., 23, 3357–3360.

    Article  Google Scholar 

  • Nicholls, N., W. Drosdowsky, and B. Lavery, 1997: Australian rainfall variability and change. Weather, 52, 66–71.

    Article  Google Scholar 

  • Philip, N. S., and K. B. Joseph, 2003: A neural network tool for analysing trends in rainfall. Comput. Geosc., 29, 215–223.

    Article  Google Scholar 

  • Pineda, F. J., 1989: Recurrent back-propagation and the dynamical approach to adaptive neural computation. Neural Computation, 1, 161–172.

    Article  Google Scholar 

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Interdecadal modulation of the impact of ENSO on Australia. Clim. Dynam., 15, 319–324.

    Article  Google Scholar 

  • Power, S. B., M. Haylock, R. Colman, and X. Wang, 2006: The Predictability of Interdecadal Changes in ENSO Activity and ENSO Teleconnections. J. Climate, 19, 4755–4771.

    Article  Google Scholar 

  • Queensland Flood Commission of Inquiry, 2011: Queensland Foods Commission of Inquiry: Interim Report, 1180pp. Brisbane, Queensland, Australia. [Available online from www.floodcommission.qld.gov.au]

  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, and O. Alves, 2011: Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36(3), 649–661.

    Article  Google Scholar 

  • Risbey, J. S., M. J. Pook, and P. C. McIntosh, 2009: On the remote drivers of rainfall variability in Australia. Mon. Wea. Rev., 137, 3233–3253.

    Article  Google Scholar 

  • Seqwater. 2011: Report on the operation of Somerset Dam and Wivenhoe Dam: January 2011 Flood Event. Queensland Government, Brisbane, Australia.

    Google Scholar 

  • Silverman, D., and J. A. Dracup, 2000: Artificial neural networks and long-range precipitation prediction in California. J. Appl. Meteor., 39, 57–66.

    Article  Google Scholar 

  • Stone, R. C., G. L. Hammer, and T. Marcussen, 1996: Prediction of global rainfall probabilities using phases of the southern oscillation index. Nature, 384, 252–255.

    Article  Google Scholar 

  • Suppiah, R., 2004: Trends in the southern oscillation phenomenon and Australian rainfall and changes in their relationship. Int. J. Climatol., 24, 269–290.

    Article  Google Scholar 

  • Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998: Forecasting ENSO Events: A neural network-extended EOF approach. J. Climate, 11, 29–41.

    Article  Google Scholar 

  • Thresher, R. E., 2002: Solar correlates of Southern Hemisphere mid-latitude climate variability. Int. J. Climatol., 22, 901–915.

    Article  Google Scholar 

  • Tomasino, M., D. Zanchettin, and P. Traverso, 2004: Long-range forecasts of River Po discharges based on predictable solar activity and a fuzzy neural network model. Hydrological Sciences Journal, 49, 673–684.

    Article  Google Scholar 

  • Ummenhofer, C. C., M. H. England, P. C. McIntosh, G. A. Meyers, Michael J. Pook, J. S. Risbey, A. Sen Gupta, and A. S. Taschetto, 2009: What causes southeast Australia’s worst droughts? Geophys. Res. Lett., 36, L04706.

    Article  Google Scholar 

  • Vaze, J., J. Teng, and F. H. S. Chiew, 2011: Assessment of GCM simulations of annual and seasonal rainfall and daily rainfall distribution across south-east Australia. Hydrological Processes, 25, 1486–1497.

    Article  Google Scholar 

  • Venkatesan, C., S. D. Raskar, S. S. Tambe, B. D. Kulkarni, and R. N. Keshavamurty, 1997: Prediction of all India summer monsoon rainfall using error back propagation neural networks. Meteorol. Atmos. Physics, 62, 225–240.

    Article  Google Scholar 

  • Verdon, D. C., and S. W. Franks, 2006: Long-term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett., 33(6), L06712.

    Article  Google Scholar 

  • Versteegh, G. J. M., 2005: Solar forcing of climate. 2: Evidence from the past. Space Science Reviews., 120, 243–286.

    Article  Google Scholar 

  • Vines, R. G., 2008: Australian rainfall patterns and the southern oscillation. 2. A regional perspective in relation to Luni-solar (Mn) and Solar-cycles (Sc) signals. Rangeland Journal, 30, 349–359.

    Article  Google Scholar 

  • Wang, Z., and H. Sheng, 2010: Rainfall Prediction Using Generalized Regression Neural Network: Case study Zhengzhou. Int. Conf. on Computational and Information Sciences, Chengdu, Sichuan, China, 1265–1268.

  • Wu, X., H. Cao, A. Flitman, F. Wei, and G. Feng, 2001: Forecasting monsoon precipitation using artificial neural networks. Adv. Atmos. Sci., 18, 950–958.

    Google Scholar 

  • Zhao, M., and H. H. Hendon, 2009: Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quart. J. Roy. Meteor. Soc. 135, 337–352.

    Article  Google Scholar 

  • Zwiers, F. W., and H. Von Storch, 2004: On the role of statistics in climate research. Int. J. Climatol., 24, 665–680.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Abbot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbot, J., Marohasy, J. Application of artificial neural networks to rainfall forecasting in Queensland, Australia. Adv. Atmos. Sci. 29, 717–730 (2012). https://doi.org/10.1007/s00376-012-1259-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1259-9

Key words

Navigation