Skip to main content
Log in

Hotspots of microbial activity induced by earthworm burrows, old root channels, and their combination in subsoil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Biopores are pores or voids in soil produced by roots, by earthworms, or by the occupation of earthworms in root pores, which are considered important microbial hotspots, especially in subsoil. We hypothesized that earthworms (Lumbricus terrestris L.) exert stronger effects on microbial activities than decaying plant roots (of Cichorium intybus L.) in the subsoil because of the addition of pre-digested organic material. We tested this hypothesis by analyzing microbial biomass (Cmic), total organic C (Corg), and activities of eight enzymes (cellobiohydrolase, β-glucosidase, xylanase, acid phosphomonoesterase, leucine aminopeptidase, tyrosine aminopeptidase, chitotriosidase, and n-acetylglucosaminidase) down to 105-cm depth. The Cmic increase was associated with a two- to threefold increase of Corg content in biopores as compared to bulk soil. The highest percentage of Cmic-to-Corg (3.7 to 7.3 %) in the drilosphere demonstrated the enhancement of microbial efficiency for organic matter decomposition by earthworms. The availability of organic matter in biopores increased the activities of C- and N-targeting enzymes by 1.2–11.3 times, but reduced acid phosphomonoesterase activity by 10–40 % in biopores versus bulk soil. Introducing earthworms in root biopores caused 1.5–1.8 times higher microbial biomass and 1.2–1.9 times increased enzyme activities compared to the sole effect of earthworms. Soil depth showed a strong effect on the drilosphere, but only slight effects on the biochemical properties of root biopores and bulk soil. In conclusion, biopores are important microbial hotspots of C, N, and P transformations in subsoil. Earthworms exerted stronger effects on biochemical properties of biopores than decaying roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aira M, Monroy F, Dominguez J (2003) Effects of two species of earthworms (Allolobophora sp.) on soil systems: a microfaunal and biochemical analysis. Pedobiologia 47:877–881

    Google Scholar 

  • Aira M, Monroy F, Domίnguez J (2007) Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci Total Environ 385:252–261

    Article  CAS  PubMed  Google Scholar 

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecology Letter 8:626–635

    Article  Google Scholar 

  • Allison SD, Vitousek PM (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1978) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 3:215–221

    Article  Google Scholar 

  • Anderson TH, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S (2014) Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils 50:1189–1200

    Article  CAS  Google Scholar 

  • Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex core-thrurus (Glossoscolecidae, Oligochaeta). Soil Biol Biochem 18:539–541

    Article  Google Scholar 

  • Bastian F, Bouziri L, Nicolardot B, Ranjard L (2009) Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol Biochem 41:262–275

    Article  CAS  Google Scholar 

  • Bauhus J, Paré D, Côté L (1997) Effects of tree species, stand age and soil type on soil microbial biomass and its activity in a southern boreal forest. Soil Biol Biochem 30:1077–1089

    Article  Google Scholar 

  • Beck T (1984) Mikrobiologische und biochemische Charackterisierung landwirtschaftlich genutzter Böden II Mitteilung Beziehung zum Humusgehalt. Zeitschrift für Pflanzenernährung und Bodenkunde 147:467–475

    Article  CAS  Google Scholar 

  • Blagodatskaya EV, Anderson TH (1999) Adaptive responses of soil microbial communities under experimental acid stress in controlled laboratory studies. Appl Soil Ecol 11:207–216

    Article  Google Scholar 

  • Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y (2011) Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biol Biochem 43:778–786

    Article  CAS  Google Scholar 

  • Blagodatsky SA, Yevdokimov IV, Larionova AA, Richter J (1998) Microbial growth in soil and nitrogen turnover: model calibration with laboratory data. Soil Biol Biochem 30:1757–1764

    Article  CAS  Google Scholar 

  • Brown GG, Barois I, Lavelle P (2000) Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains. Eur J Soil Biol 36:177–198

    Article  Google Scholar 

  • Buck C, Langmaack M, Schrader S (1999) Nutrient content of earthworm casts influenced by different mulch types. Eur J Soil Biol 35:23–30

    Article  CAS  Google Scholar 

  • Buttigieg PL, Ramette A (2014) A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol 90:543–550.

    Article  CAS  PubMed  Google Scholar 

  • Capowiez Y, Bottinelli N, Sammartino S, Michel E, Jouquet P (2015) Morphological and functional characterisation of the burrow systems of six earthworm species (Lumbricidae). Biol Fertil Soils 51:869–877

    Article  Google Scholar 

  • Chenu C, Stotzky G (2002) Interactions between microorganisms and soil particles: an overview. In: Huang PM, Bollag J-M, Senesi N (eds) Interaction between soil particles and microorganisms. John Wiley and Sons, Ltd, West Sussex, pp 4–40

    Google Scholar 

  • Creamer RE, Schulte RPO, Stone D, Gal A, Krogh PH, Papa GL, Murray PJ, Pérès G, Foerster B, Rutgers M, Sousa JP, Winding A (2014) Measuring soil respiration across Europe: do incubation temperature and incubation period matter? Ecol Indic 36:409–418

    Article  Google Scholar 

  • Dippold MA, Kuzyakov Y (2013) Biogeochemical transformations of amino acids in soil assessed by position-specific labelling. Plant Soil 373:385–401

    Article  CAS  Google Scholar 

  • Don A, Steinberg B, Schöning I, Pritsch K, Joschoko M, Gleixner G, Schulze ED (2008) Organic carbon sequestration in earthworm burrows. Soil Biol Biochem 40:1803–1812

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 09:167–172

    Article  CAS  Google Scholar 

  • Farrell RE, Gupta VVSR, Germida JJ (1994) Effects of cultivation on the activity and kinetics of Arylsulfatase in Saskatchewan soils. Soil Biol Biochem 26:1033–1040

    Article  CAS  Google Scholar 

  • Flegel M, Schrader S (2000) Importance of food quality on selected enzyme activities in earthworm casts (Dendrobaena octaedra, Lumbricidae). Soil Biol Biochem 32:1191–1196

    Article  CAS  Google Scholar 

  • German DP, Chacon SS, Allison SD (2011) Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92:1471–1480

    Article  PubMed  Google Scholar 

  • Gill RA, Burke IC (2002) Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant Soil 241:233–242

    Article  CAS  Google Scholar 

  • Gilot C (1997) Effects of a tropical geophageous earthworm, M. anomala (Megascolecidae), on soil characteristics and production of a yam crop in Ivory Coast. Soil Biol Biochem 29:353–359

    Article  CAS  Google Scholar 

  • Goberna M, Insam H, Klammer S, Pascual JA, Sanchez J (2005) Microbial community structure at different depths in disturbed and undisturbed semiarid mediterranean forest soils. Microb Ecol 50:315–326

    Article  CAS  PubMed  Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29

    PubMed  PubMed Central  Google Scholar 

  • Hoang TTD, Razavi BS, Kuzyakov Y, Blagodatskaya E (2016) Earthworm burrows: kinetics and spatial distribution of enzymes of C-, N- and P- cycles. Soil Biol Biochem 99:94–103

    Article  CAS  Google Scholar 

  • Hodge A, Robinson D, Filter A (2000) Are microorganisms more effective than plants at competing for nitrogen? Trends Plant Sci 5:304–308

    Article  CAS  PubMed  Google Scholar 

  • Jégou D, Schrader S, Diestel H, Cluzeau D (2001) Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Appl Soil Ecol 17:165–174

    Article  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Dekker, New York, pp 415–471

    Google Scholar 

  • Kautz T (2014) Research on subsoil biopores and their functions in organically managed soils: a review. Renew Agr Food Syst 30:318–327

    Article  Google Scholar 

  • Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R, Javaux M, Kemna A, Kuzyakov Y, Munch JC, Pätzold S, Peth S, Scherer HW, Schloter M, Schneider H, Vanderborght J, Vetterlein D, Walter A, Wiesenberg GLB, Köpke U (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022

    Article  CAS  Google Scholar 

  • Kautz T, Lüsebrink M, Pätzold S, Vetterlein D, Pude R, Athmann M, Küpper PM, Perkons U, Köpke U (2014) Contribution of anecic earthworms to biopore formation during cultivation of perennial ley crops. Pedobiologia 57:47–52

    Article  Google Scholar 

  • Kibblewhite MG, Ritz K, Swift MJ (2007) Soil health in agricultural systems. Philos Trans R Soc B 363:685–701

    Article  Google Scholar 

  • Koch AL (1985) The macroeconomics of bacterial growth. In: Fletcher M, Floodgate GD (eds) Bacteria in their natural environments. Academic, London, pp 1–42

    Google Scholar 

  • Koch O, Tscherko G, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochem Cy 21:1–11

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Article  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Blagodatskaya E (2015) Microbial hotspots and hot moments in soil: concept and review. Soil Biol Biochem 83:184–199

    Article  CAS  Google Scholar 

  • Lavelle P, Martin A (1992) Small-scale and large-scale effects of endogeic earthworm on soil organic matter dynamics in soils of the humid tropics. Soil Biol Biochem 24:1491–1498

    Article  Google Scholar 

  • Le Bayon RC, Binet F (2006) Earthworms change the distribution and availability of phosphorous in organic substrates. Soil Biol Biochem 38:235–246

    Article  Google Scholar 

  • Lin Q, Brookes PC (1999) An evaluation of the substrate-induced respiration method. Soil Biol Biochem 31:1969–1983

    Article  CAS  Google Scholar 

  • Lopez-Hernandez D, Lavelle P, Niño M (1993) Phosphorus transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae: Oligochaeta). Soil Biol Biochem 25:789–792

    Article  CAS  Google Scholar 

  • MacKay AD, Syers JK, Springett JA, Gregg PEH (1982) Plant availability of phosphorus in superphosphate and a phosphate rock as influenced by earthworms. Soil Biol Biochem 14:281–287

    Article  Google Scholar 

  • Malcolm RE (1983) Assessment of phosphatase activity in soils. Soil Biol Biochem 15:403–408

    Article  CAS  Google Scholar 

  • Marinissen JCY, de Ruiter PC (1993) Contribution of earthworm to carbon and nitrogen cycling in agro-ecosystems. Agric Ecosyst Environ 47:59–74

    Article  CAS  Google Scholar 

  • Martin A (1991) Short- and long-term effects of the endogeic earthworm Millsonia anomala (Omodeo) (Megascolecidæ, Oligochæta) of tropical savannas, on soil organic matter. Biol Fert Soils 11:234–238

    Article  Google Scholar 

  • Marx MC, Kandeler E, Wood M, Wermbter N, Jarvis SC (2005) Exploring the enzymatic landscape: distribution and kinetics of hydrolytic enzymes in soil particale-size fractions. Soil Biol Biochem 37:35–48

    Article  CAS  Google Scholar 

  • Matson PA, Parton W, Power A, Swift M (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  CAS  PubMed  Google Scholar 

  • Mcgill MB, Cannon KR, Robertson JA, Cook FD (1986) Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can J Soil Sci 66:1–19

    Article  Google Scholar 

  • Menichetti L, Ekblad A, Kätterer T (2014) Contribution of roots and amendments to soil carbon accumulation within the soil profile in a long-term field experiment in Sweden. Agric Ecosyst Environ 200:79–87

    Article  Google Scholar 

  • Mganga KZ, Razavi BS, Kuzyakov Y (2015) Microbial and enzymes response to nutrient additions in soils of Mt. Kilimanjaro region depending on land use. Eur J Soil Biol 69:33–40

    Article  CAS  Google Scholar 

  • Miller M, Dick RP (1995) Dynamics of soil C and microbial biomass in whole soil and aggregates in two cropping systems. Appl Soil Ecol 2:253–261

    Article  Google Scholar 

  • Nakamoto T (2000) The distribution of wheat and maize roots as influenced by biopores in a subsoil of the Kanto loam type. Plant Prod Sci 3:140–144

    Article  Google Scholar 

  • Nannipieri P, Gianfreda L (1998). Kinetics of enzyme reactions in soil environments. In: Huang PM, Senesi N, Buffle J (eds) Environmental particles-structure and surface reactions of soil particles. J. Wiley and Sons, pp 449–479

  • Nannipieri P, Ceccanti B, Bianchi D (1988) Characterization of humus-phosphatase complexes extracted from soil. Soil Biol Biochem 20:683–691

    Article  CAS  Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humus and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 293–328

    Chapter  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Obreson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, pp 215–243

    Chapter  Google Scholar 

  • Nannipieri P, Giagnoni L, Renella G, Puglisi E, Ceccanti B, Masciandaro G, Fornasier F, Moscatelli MC, Marinari S (2012) Soil enzymology: classical and molecular approaches. Biol Fertil Soils 48:743–762

    Article  Google Scholar 

  • Orchard VA, Cook FJ (1983) The relationship between soil respiration and soil moisture. Soil Biol Biochem 15:447–453

    Article  Google Scholar 

  • Pathan SI, Ceccherini MT, Pietramellara G, Puschenreiter M, Giagnoni L, Arenella M, Varanini Z, Nannpieri P, Renella G (2015) Enzyme activitiy and microbial community structure in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 387:413–424

    Article  CAS  Google Scholar 

  • Perkons U, Kautz T, Uteau D, Peth S, Geier V, Thomas K, Holz KL, Athmann M, Pude R, Köpke U (2014) Root-length densities of various annual crops following crops with contrasting root systems. Soil Till Res 137:50–57

    Article  Google Scholar 

  • Poll C, Marhan S, Ingwersen J, Kandeler E (2008) Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol Biochem 40:1306–1321

    Article  CAS  Google Scholar 

  • Rawlings ND, Morton FR, Barrett AT (2006) MEROPS: the peptidase database. Nucleic Acids Res 32:D160–D164

    Article  Google Scholar 

  • Razavi BS, Blagodatskaya E, Kuzyakov Y (2015) Nonlinear temperature sensitivity of enzyme kinetics explains canceling effect: a case study on loamy haplic Luvisol. Front Microbiol 6:1126

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritz K, Wheatley RE (1989) Effects of water amendment on basal and substrate-induced respiration rates of mineral soils. Biol Fert Soils 8:242–246

    Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339

    Article  Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Chang Biol 16:416–426

    Article  Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    Article  CAS  Google Scholar 

  • Satchell JE, Martin K (1984) Phosphatase activity in earthworm faeces. Soil Biol Biochem 16:191–194

    Article  CAS  Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparision of climate and litter quality effects. Oecologia 129:407–419

    Article  Google Scholar 

  • Spohn M, Kuzyakov Y (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots: a soil zymography analysis. Plant Soil 379:67–77

    Article  CAS  Google Scholar 

  • Stehouwer RC, Dick WA, Traina SJ (1993) Characteristics of earthworm burrow lining affecting atrazine sorption. J Environ Qual 22:181–185

    Article  CAS  Google Scholar 

  • Svensson K, Friberg H (2007) Changes in active microbial biomass by earthworms and grass amendments in agricultural soil. Biol Fert Soils 44:223–228

    Article  Google Scholar 

  • Tabatabai MA, Garcίa-Manzanedo AM, Acosta-Martίnez V (2002) Substrate specificity of arylamidase in soils. Soil Biol Biochem 34:103–110

    Article  CAS  Google Scholar 

  • Thielemann U (1986) The octet-method for sampling earthworm populations. Pedobiologia 29:296–302

    Google Scholar 

  • Tiunov AV, Scheu S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 14:17–26

    Article  Google Scholar 

  • Uksa M, Schloter M, Kautz T, Athmann M, Köpke U, Fischer D (2015) Spartial variability of hydrolytic and oxidative potential enzyme activities in different subsoil compartments. Biol Fertil Soils 51:517–521

    Article  CAS  Google Scholar 

  • Uteau D, Pagenkemper SK, Peth S, Horn R (2013) Root and time dependent soil structure formation and its influence on gas transport in the subsoil. Soil Till Res 132:69–76

    Article  Google Scholar 

  • Van Bruggen AHC, Semenov AM (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24

    Article  Google Scholar 

  • Van Der Waerden BL (1952) On the method of saddle points. Appl Sci Res B 2:33–45

    Article  Google Scholar 

  • Vetterlein D, Kühn T, Kaiser K, Jahn R (2013) Illite transformation and potasium release upon changes in composition of the rhizosphere soil solution. Plant Soil 371:267–279

    Article  CAS  Google Scholar 

  • Wan JHC, Wong MH (2004) Effects of earthworm activity and P-solubilizing bacteria on P availability in soil. J Soil Sci Plant Nutr 167:209–213

    Article  CAS  Google Scholar 

  • West AW, Sparling GP (1986) Modification to the substrate-induced respiration method to permit measurement of microbial biomass in soils of differing water contents. J Microbiol Meth 3:177–189

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Timo Kautz for the field experiment setup, Dr. Evgenia Blagodatskaya for the fruitful suggestions on the experimental setup, Dr. Norman Loftfield for the support in laboratory, and the Centre for Stable Isotope Research and Analysis—KOSI (Göttingen, Germany) for the TOC measurement. We gratefully acknowledge the Vietnamese government for supporting DH, and DAAD for supporting BSR. The study was supported by the German Research Foundation in the framework of the project PAK 888.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duyen T. T. Hoang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary S1 Relationship between Cmic and Ka. (PDF 91 kb)

Appendices

Appendix 1

(Fig. 7).

Fig. 7
figure 7

The variation of substrate affinity (μmol g−1 soil) at the two soil depths (45–75 and 75–105 cm)

Appendix 2

Fig. 8
figure 8

The percentage of Corg presented as Cmic at the two soil depths (45–75 and 75–105 cm)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, D.T.T., Pausch, J., Razavi, B.S. et al. Hotspots of microbial activity induced by earthworm burrows, old root channels, and their combination in subsoil. Biol Fertil Soils 52, 1105–1119 (2016). https://doi.org/10.1007/s00374-016-1148-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1148-y

Keywords

Navigation