Skip to main content
Log in

Diagnosis of sulfur availability for corn based on soil analysis

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Different edaphic properties were evaluated to diagnose soil sulfur (S) availability for corn in 15 field experiments as follows: (a) soil sulfate (SO4 −2-S) content at sowing at 0–20 cm and 0–60 cm depths [Sini(0–20) and Sini(0–60)]; (b) soil SO4 −2-S content at V6 corn stage at 0–20 and 0–60 cm depths [SV6(0–20) and SV6(0–60)]; (c) potentially mineralizable S estimations [mineralizable S determined by short-term aerobic incubation (Smineralized), mineralizable N determined by short-term anaerobic incubation (Nan), soil organic matter (SOM), SOM/clay ratio, and SOM/(clay + silt) ratio]; and (d) a combined index between Sini(0–60) and potentially mineralizable S estimations. Three out of 15 sites presented grain yield response to S fertilization (p < 0.1). The average yield response was 1.06 Mg ha−1 for these three sites. From the evaluated predictors, Sini(0–60), SV6(0–60), and Nan were the ones that better estimated the response to S fertilization, showing a linear-plateau relationship (R 2 = 0.68, 0.70, and 0.62, respectively). Values greater than 40 kg S ha−1, 59 kg S ha−1, and 54 mg N kg−1 for Sini(0–60), SV6(0–60), and Nan, respectively indicated no response to S fertilization. All other evaluated edaphic variables presented no relationship, or just a weak one, with S response. The incorporation of S mineralization indexes to the Sini(0–60) model did not improve its performance. Our results indicate that the evaluation of S mineralization has the potential to be used in S fertilization diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrade FH, Uhart SA, Frugone M (1993) Intercepted radiation at flowering and kernel number in maize: shade versus plant density effects. Crop Sci 33:482–485

    Article  Google Scholar 

  • Andrade FH, Calviño P, Cirilo A, Barbieri P (2002) Yield responses to narrow rows depend on increased radiation interception. Agron J 94:975–980

    Article  Google Scholar 

  • Beaton J, Soper R (1986) Plant response to sulfur in Western Canada. In: Tabatabai M (ed) Sulfur in agriculture. ASA, CSSA and SSSA, Madison, pp 375–403

    Google Scholar 

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911

    Article  CAS  Google Scholar 

  • Blake-Kalff MMA, Zhao FJ, McGrath SP (2002) Sulfur deficiency diagnosis using plant tissue analysis. In: Proceedings 503. International Fertilizer Society. York, UK, pp 1–23

  • Bloem E, Haneklaus S, Schroetter S, Schnug E (2000) Aspects of agronomical and physiological research on sulfur deficiency in agricultural crops. Sulfur research in Europe. FAL Agric Res 218:11–15

    Google Scholar 

  • Bloem E, Haneklaus S, Schroetter S, Schnug E (2001) Spatial and temporal variability of sulphate concentration in soils. Commun Soil Sci Plant Anal 32:1391–1403

    Article  CAS  Google Scholar 

  • Bouyoucos G (1962) Hydrometer method for making particle size analysis of soils. Agron J 54:464–465

    Article  Google Scholar 

  • Bremner JM, Keeney DR (1965) Steam distillation method for determination of ammonium, nitrate and nitrite. Anal Chim Acta 32:485–495

    Article  CAS  Google Scholar 

  • Bundy LG, Walters DT, Olness AE (1999) Evaluation of soil nitrate tests for predicting corn nitrogen response in the north central region. North Central Reg. Res. Publ. 342. Univ of Wisconsin-Madison. http://www.agronext.iastate.edu/soilfertility/info/NCR%20Research%20Publication%20No.%20342.pdf. Accessed 1 Jun 2016

  • Camberato J, Maloney S, Casteel S (2012) Sulfur deficiency in corn. Purdue University Department of Agronomy. https://www.agry.purdue.edu/ext/corn/news/timeless/sulfurdeficiency.pdf. Accessed 14 Mar 2016

  • Carciochi WD, Divito GA, Reussi Calvo NI, Wyngaard N, Echeverría HE (2014) Evaluation of sulfur mineralization methodologies in short term aerobic incubation. (In Spanish) XXVI Argentine Congress of Soil Science and II National Meeting “Organic Matter and Humic Substances”. Bahía Blanca, 5th to 9th of May 2014. In CD

  • Divito GA, Echeverría HE, Andrade FH, Sadras VO (2015) Diagnosis of S deficiency in soybean crops: performance of S and N:S determinations in leaf, shoot and seed. Field Crops Res 180:167–175

    Article  Google Scholar 

  • Durán A, Morrás H, Studdert G, Xiaobing L (2011) Distribution, properties, land use and management of mollisols in South America. Chin Geogr Sci 21:511–530

    Article  Google Scholar 

  • Echeverría HE, San Martín NF, Bergonzi R (1996) Sulfur and nitrogen mineralization relationship in agricultural soils. (In Spanish, with English abstract). Cienc Suelo 14:107–109

    Google Scholar 

  • Eriksen J, Murphy MD, Schnug E (1998) The soil sulphur cycle. In: Schnug E (ed) Sulphur in agroecosystems. Kluwer Academic Press, The Netherlands, pp 39–73

    Chapter  Google Scholar 

  • Fernández FG, Hoeft RG (2009) Managing soil pH and crop nutrients. In: Illinois agronomy handbook, 24th edn. Univ. of Illinois, Urbana, pp 91–112

    Google Scholar 

  • Fernández FG, Ebelhar S, Greer K, Brown H (2012) Corn response to sulfur in Illinois. Illinois Fertilizer & Chemical Association. https://www.ifca.com/media/files/frec_358_fernandez_2012_report.pdf. Accessed 14 Mar 2016

  • Fox RL, Olson RA, Rhoades HF (1964) Evaluating sulphur status of soils by plant and soils tests. Soil Sci Soc Am Proc 28:243–246

    Article  Google Scholar 

  • Ghani A, Mc Laren RG, Swift RS (1991) Sulphur mineralisation in some New Zealand soils. Biol Fertil Soils 11:68–71

    Article  CAS  Google Scholar 

  • Grobler L, Bloem AA, Claassens AS (1999) A critical soil sulphur level for maize (Zea mays L.) grown in a glasshouse. S Afr J Plant Soil 16:204–206

    Article  CAS  Google Scholar 

  • Haneklaus S, Bloem E, Schnug E, De Kok LJ, Stulen I (2006) Sulfur. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Taylor and Francis, Boca Raton, London, New York, pp 183–238

    Chapter  Google Scholar 

  • Haneklaus S, Bloem E, Schnug E (2007) Sulfur interactions in crop ecosystems. In: Hawkesford MJ, De Kok LJ (eds) Sulphur in plants—an ecological perspective. Springer, Dordrecht, pp 17–58

    Chapter  Google Scholar 

  • Hitsuda K, Toriyama K, Subbaraa V, Ito O (2008) Sulfur management for soybean production. In: Jez J (ed) Sulfur, a missing link between soils, crops, and nutrition, vol 50, Agronomy monograph. ASA, CSSA, SSSA, Madison, pp 117–142

    Google Scholar 

  • Hoeft RG, Sawyer JE, Vanden-Heuvel RM, Schmitt MA, Brinkman GS (1985) Corn response to sulfur on Illinois soils. J Fertil Issues 2:95–104

    CAS  Google Scholar 

  • Hollis JM, Hannam J, Bellamy PH (2012) Empirically-derived pedotransfer functions for predicting bulk density in European soils. Eur J Soil Sci 63:96–109

    Article  CAS  Google Scholar 

  • Jeet S, Singh JP, Kumar Prasad R, Kumar P, Kumari A, Prakash P (2012) Effect of nitrogen and sulphur levels on yield, economics and quality of QPM hybrids under dryland conditions of Eastern Uttar Pradesh, India. J Agr Sci 4:31–38

    Google Scholar 

  • Kamprath EJ, Jones US (1986) Plant response to sulfur in the Southern United States. In: Tabatabai MA (ed) Sulfur in agriculture. ASA, CSSA and SSSA, Madison, pp 323–342

    Google Scholar 

  • Kang BT, Osiname OA (1976) Sulfur response of maize in Western Nigeria. Agron J 68:333–336

    Article  CAS  Google Scholar 

  • Keeney DR (1982) Nitrogen-availability indices. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA and SSSA, Madison, pp 711–733

    Google Scholar 

  • Keeney DR, Bremner JM (1962) Unpublished. Agronomy Department, Iowa State University, Ames, Iowa. Cited by Bremner JM 1965. Nitrogen availability indexes. In: Black CA, Evans DD, White JL, Ensminger LE, Clark FE (eds). Methods of soil analysis, part 2. The American Society of Agronomy, In, Madison, pp 1324–1341

  • Magdoff FR (1991) Understanding the Magdoff pre-sidedress nitrate test for corn. J Prod Agric 4:297–305

    Article  Google Scholar 

  • Magdoff FR, Ross D, Amadon J (1984) A soil test for nitrogen availability to maize. Soil Sci Soc Am J 48:1301–1304

    Article  Google Scholar 

  • Maurya KL, Sharma HP, Tripathi HP, Singh S (2005) Effect of nitrogen and sulfur application on yield attributes, yield and net returns of winter maize (Zea Mays L.). Haryana J Agron 21:115–116

    Google Scholar 

  • Maynard DG, Stewart JWR, Bettany JR (1983) Sulphur and nitrogen mineralization in soils compared using two incubation techniques. Soil Biol Biochem 15:251–256

    Article  CAS  Google Scholar 

  • Maynard D, Kalra Y, Radford F (1987) Extraction and determination of sulfur in organic horizons of forest soils. Soil Sci Soc Am J 51:801–806

    Article  CAS  Google Scholar 

  • Pagani A, Echeverría HE (2011) Performance of sulfur diagnostic methods for corn. Agron J 103:413–421

    Article  Google Scholar 

  • Pagani A, Echeverría HE, Andrade FH, Sainz Rozas HR (2012) Effects of nitrogen and sulfur application on grain yield, nutrient accumulation, and harvest indexes in maize. J Plant Nutr 35:1080–1097

    Article  CAS  Google Scholar 

  • Pirela HJ, Tabatabai MA (1988) Sulphur mineralisation rates and potentials of soils. Biol Fertil Soils 6:26–32

    Article  Google Scholar 

  • Prystupa P, Gutierrez Boem F, Salvagiotti F, Ferraris G, Couretot L (2006) Measuring corn response to fertilization in the Northern Pampas. Better Crops 90:25–27

    Google Scholar 

  • R core team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed 14 Mar 2016

  • Rabuffetti A, Kamprath EJ (1977) Yield, N and S content of corn as affected by N and S fertilization in coastal plain soils. Agron J 69:785–788

    Article  CAS  Google Scholar 

  • Rasheed M, Ali H, Mahmood T (2004) Impact of nitrogen and sulfur application on growth and yield of maize (Zea Mays L.) crop. J Res (Science) 15:153–157

    Google Scholar 

  • Rehm GW (2005) Sulfur management for corn growth with conservation tillage. Soil Sci Soc Am J 69:709–717

    Article  CAS  Google Scholar 

  • Rehm GW, Clapp JG (2008) Sulfur in a fertilizer program for corn. In: Jez J (ed) Sulfur, a missing link between soils, crops, and nutrition. Agronomy Monograph 50. ASA, CSSA, SSSA, Madison, pp 143–152

    Google Scholar 

  • Reussi Calvo N, Echeverría H, Sainz Rozas H (2011) Diagnosing sulfur deficiency in spring red wheat: plant analysis. J Plant Nutr 34:573–589

    Article  Google Scholar 

  • Reussi Calvo NI, Sainz Rozas H, Echeverría H, Berardo A (2013) Contribution of anaerobically incubated nitrogen to the diagnosis of nitrogen status in spring wheat. Agron J 105:321–328

    Article  Google Scholar 

  • Riffaldi R, Saviozzi A, Cardelli R, Cipolli S, Levi-Minzi R (2006) Sulphur mineralization kinetics as influenced by soil properties. Biol Fertil Soils 43:209–214

    Article  CAS  Google Scholar 

  • Ritchie SW, Hanway JJ (1982) How a corn plant develops. Iowa State University of Science and Technology. Cooperative Extension Service Ames, Iowa. Special Report N° 48

  • Sainz Rozas HR, Calviño PA, Echeverría HE, Barbieri PA, Redolati M (2008) Contribution of anaerobically mineralized nitrogen to the reliability of planning or presidedress soil nitrogen test in maize. Agron J 100:1020–1025

    Article  Google Scholar 

  • Sainz Rozas H, Echeverria HE, Angelini H (2011) Organic carbon and pH levels in agricultural soils of the Pampa and extra-Pampean regions of Argentina. (In Spanish, with English abstract). Cienc Suelo 29:29–37

    Google Scholar 

  • Salvagiotti F, Gutiérrez Boem F, Ferraris G, Prystupa P, Couretot L, Dignani D (2005) Corn response to sulfur increasing doses and its relationship with soil variables. (In Spanish) Para mejorar la producción - INTA EEA Oliveros 29:61–66

  • San Martín N, Echeverría HE (1995) Sulfate in southeast of Buenos Aires soils. (In Spanish, with English abstract). Cienc Suelo 13:95–97

    Google Scholar 

  • Sarrantonio M, Scott TW (1988) Tillage effects on availability of nitrogen to corn following a winter green manure crop. Soil Sci Soc Am J 52:1661–1668

    Article  Google Scholar 

  • Sawyer JE, Lang B, Barker DW, Cummins G (2009) Dealing with sulphur deficiencies in crop production: the Iowa experience. In North Central Extension-Industry Soil Fertility Conference. Vol. 25. Des Moines, IA. http://www.agronext.iastate.edu/soilfertility/info/NC09Sawyerpg64.pdf. Accessed 14 Mar 2016

  • Sawyer JE, Lang B, Barker DW (2012) Sulfur fertilization response in Iowa corn and soybean production. Proc. of the 2012 Wisconsin Crop Management Conference, College of Agricultural and Life Science, University of Wisconsin, Madison Vol. 51, pp 39–48

  • Scherer HW (2001) Sulfur in crop production. Eur J Agron 14:81–111

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176

    Article  CAS  Google Scholar 

  • Sutradhar AK, Fernandez FG (2015). Corn response to sulfur in Illinois. Synergy in Science: Partnering for Solutions, 2015 Annual Meeting. ESA, ASA, CSSA, SSSA, Minneapolis, 15–18 November

  • Tabatabai MA, Al-Khafaji AA (1980) Comparison of nitrogen and sulphur mineralization in soils. Soil Sci Soc Am J 44:1000–1006

    Article  CAS  Google Scholar 

  • Tanikawa T, Noguehi K, Nakanishi K, Shigenaga H, Nagajura J, Sakai H, Ajama A, Takahashi M (2014) Sequential transformation rates of soil organic sulfur fractions in two-step mineralization process. Biol Fertil Soils 50:225–237

    Article  CAS  Google Scholar 

  • Van Biljon JJ, Fouche D, Botha ADP (2004) Threshold values for sulphur in soils of the main maize-producing areas of South Africa. S Afr J Plant Soil 21:152–156

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Waring S, Bremner J (1964) Ammonium production in soil under water-logged conditions as an index of nitrogen availability. Nature 201:951–952

    Article  CAS  Google Scholar 

  • Wyngaard N, Cabrera ML (2015) Measuring and estimating sulfur mineralization potential in soils amended with poultry litter or inorganic fertilizer. Biol Fertil Soils 51:545–552

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of a thesis by Walter D. Carciochi in partial fulfilment of the requirements for the Doctor’s degree (Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina). Funding for this research project was provided by Instituto Nacional de Tecnología Agropecuaria-Proyecto Nacional Suelo 1134021, Fondo para la Investigación Científica y Tecnológica PICT 2011–1796 and Universidad Nacional de Mar del Plata AGR447/14. We want to express our gratitude to Juan Orcellet and Agustín Pagani for facilitating some of the experimental sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter D. Carciochi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carciochi, W.D., Wyngaard, N., Divito, G.A. et al. Diagnosis of sulfur availability for corn based on soil analysis. Biol Fertil Soils 52, 917–926 (2016). https://doi.org/10.1007/s00374-016-1130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1130-8

Keywords

Navigation