Skip to main content
Log in

Decomposition of tobacco roots with modified phenylpropanoid content by fungi with contrasting lignocellulose degradation strategies

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The decomposition of tobacco roots with genetic modifications to lignin biosynthesis by the ligninolytic fungus Phanerochaete chrysosporium, by the cellulolytic fungus Chaetomium globosum, and by microbial communities in soil were examined to determine whether the rates of decomposition of the modified and unmodified roots decomposed at different rates, whether the order of colonization by P. chrysosporium and C. globosum facilitated decomposition, and whether the microbial community in soil was conditioned by exposure to roots subsequently so that the subsequent decomposition of the roots was increased. Both P. chrysosporium and C. globosum decomposed the modified roots more rapidly, at least initially, than the unmodified roots. Colonization by P. chrysosporium facilitated the subsequent decomposition by C. globosum, presumably because by degrading lignin, P. chrysosporium increased the susceptibility of the polysaccharide component of root material to attack by C. globosum. Selection of the soil microbial community by exposure to the modified residues accelerated subsequent decomposition of the root modified. Although demonstrating effects of the lignin modification on decomposition, they are relatively subtle and in most cases short-lived (less than 40 days) ones to which the microbial community is able to adapt, and therefore, we conclude that there are unlikely to be any persistent effects of the modified lignin on the soil decomposer community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott JC, Barakate A, Pinçon G, Legrand M, Lapierre C, Mila I, Schuch W, Halpin C (2002) Simultaneous suppression of multiple genes by single transgenes. Downregulation of three unrelated lignin biosynthetic genes in tobacco. Plant Physiol 128:844–853

    Article  PubMed  CAS  Google Scholar 

  • Amato M, Ladd JN (1988) Assay for microbial biomass based on ninhydrin-reactive nitrogen in extracts of fumigated soils. Soil Biol Biochem 20:107–114

    Article  CAS  Google Scholar 

  • Atanassova R, Favet N, Martz F, Chappert B, Tollier M-T, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyl transferase sequences in sense and antisense operation. Plant J 8:465–477

    Article  CAS  Google Scholar 

  • Ayres E, Dromph KM, Bardgett RD (2006) Do plant species encourage soil biota that specialize in the rapid decomposition of their litter? Soil Biol Biochem 38:183–186

    Article  CAS  Google Scholar 

  • Bahri H, Dignac M-F, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turn-over kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38:1977–1988

    Article  CAS  Google Scholar 

  • Bao W, Reganathan V (1992) Cellobiose of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett 302:77–80

    Article  PubMed  CAS  Google Scholar 

  • Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant Soil 281:291–307

    Article  CAS  Google Scholar 

  • Blanchette R, Krueger E, Haight J, Akhtar M, Akin D (1997) Cell wall alterations in loblolly pine wood decayed by the white rot fungus Cerioporiopsis subversmispora. J Biotech 53:203–213

    Article  CAS  Google Scholar 

  • Butler FC (1953) Saprophytic behaviour of some cereal root-rot fungi. I. Saprophytic colonization of wheat straw. Ann Appl Biol 40:284–297

    Article  Google Scholar 

  • Chen L, Auh CK, Dowling P, Bell J, Lehmann D, Wang ZY (2004) Transgenic down-regulation of caffeic acid O-methyltransferase (COMT) led to improved digestibility of tall fescue (Festuca arundinacea). Plant Biol 31:235–245

    CAS  Google Scholar 

  • Cookson WR, Beare MH, Wilson PE (1998) Effects of prior crop residue management on microbial properties and crop residue decomposition. Appl Soil Ecol 7:179–188

    Article  Google Scholar 

  • Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzluf GA (eds) The Mycota III biochemistry and molecular biology. Springer, Berlin, pp 249–273

    Chapter  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London, p 549

    Google Scholar 

  • Dungait JAJ, Bol R, Lopez-Capel E, Bull ID, Chadwick D, Amelung W, Granger S, Manning DC, Evershed RP (2010) Applications of stable isotope ratio mass spectrometry in cattle dung C cycling studies. Rapid Commun Mass Spectrom 24:495–500

    Article  PubMed  CAS  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Chang Biol 18:1761–1796

    Article  Google Scholar 

  • Faix O, Mozuch MD, Kirk TK (1985) Degradation of gymnosperm (guaiacyl) vs. angiosperm (syringyl/guaiacyl) lignins by Phanerochaete chrysosporium. Holzforschung 39:203–208

    Article  CAS  Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier MT, Schuch W (1994) Manipulation of lignin quality by down-regulation of cinnamyl alcohol dehydrogenase. Plant J 6:339–350

    Article  CAS  Google Scholar 

  • Halpin C, Thain SC, Tilston EL, Guiney E, Lapierre C, Hopkins DW (2006) Ecological impacts of trees with modified lignin. Tree Genomes Genet 3:101–110

    Article  Google Scholar 

  • Hammel KE (1997) Fungal degradation of lignin. In: Cadish G, Giller KE (eds) Driven by nature: Plant litter decomposition. CAB International, Wallingford, pp 33–45

    Google Scholar 

  • Hansen RA (1999) Red oak litter promotes a microarthropod functional group that accelerates its decomposition. Plant Soil 209:37–45

    Article  CAS  Google Scholar 

  • Heilmann B, Beese F (1992) Miniaturized method to measure carbon dioxide production and biomass of soil microorganisms. Soil Sci Soc Am J 56:596–598

    Article  Google Scholar 

  • Hénault C, English LC, Halpin C, Andreux F, Hopkins DW (2006) Microbial community structure in soils with decomposing residues from plant with genetic modifications to lignin biosynthesis. FEMS Microbiol Lett 263:68–75

    Article  PubMed  Google Scholar 

  • Hopkins DW, Webster EA, Chudek JA, Halpin C (2001) Decomposition of stems from tobacco plants with genetic modifications to lignin biosynthesis. Soil Biol Biochem 33:1455–1462

    Article  CAS  Google Scholar 

  • Hopkins DW, Marinari S, Tilston EL, Halpin C (2005) Lumbricus terrestris counteract the effects of modified lignin biosynthesis on the decomposition of tobacco plant residues. Soil Biol Biochem 37:1141–1144

    Article  CAS  Google Scholar 

  • Hopkins DW, Webster EA, Tilston EL, Halpin C (2006) Influence of available substrates on the decomposition in soil of plant materials with genetic modifications to lignin biosynthesis. Eur J Soil Sci 57:495–503

    Article  CAS  Google Scholar 

  • Hopkins DW, Webster EA, Boerjan W, Pilate G, Halpin C (2007) Genetically-modified lignin belowground. Nat Biotech 25:168–169

    Article  CAS  Google Scholar 

  • Jeffries TW (1990) Biodegradation of lignin–carbohydrate complexes. Biodegradation 1:163–176

    Article  CAS  Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 9. Marcel Dekker, New York, pp 23–78

    Google Scholar 

  • Nordgren A (1988) Apparatus for the continuous, long-term monitoring of soil respiration rate in large numbers of samples. Soil Biol Biochem 20:955–957

    Article  CAS  Google Scholar 

  • O’Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transgenic Res 11:495–503

    Article  PubMed  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple J-C, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  PubMed  CAS  Google Scholar 

  • Tilston EL, Halpin C, Hopkins DW (2004) Genetic modifications to lignin biosynthesis in field-grown poplar have inconsistent effects on the rate of woody trunk decomposition. Soil Biol Biochem 36:1903–1906

    Article  CAS  Google Scholar 

  • Tuor U, Winterhalter K, Fiechter A (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J Biotechnol 41:1–17

    Article  CAS  Google Scholar 

  • Vailhé MAB, Besle JM, Maillot MP, Cornu A, Halpin C, Knight M (1998) Effect of down-regulation of cinnamyl alcohol dehydrogenase on cell wall composition and on degradability of tobacco stems. J Sci Food Agric 76:505–514

    Article  Google Scholar 

  • Webster J, Weber RWS (2007) Introduction to fungi. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Webster EA, Chudek JA, Hopkins DW (2000) Carbon transformations during decomposition of different components of plant leaves in soil. Soil Biol Biochem 32:301–314

    Article  CAS  Google Scholar 

  • Webster EA, Halpin C, Chudek JA, Tilston EL, Hopkins DW (2005) Decomposition in soil of soluble, insoluble and lignin-rich fractions of plant material from tobacco with genetic modifications to lignin biosynthesis. Soil Biol Biochem 37:751–760

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the UK Biotechnology and Biological Sciences Research Council for financial support under the Biological Interactions in the Root Environment programme. We thank Simon Thain, University of Dundee for the collaboration and Jess Searle for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Hopkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilston, E.L., Halpin, C. & Hopkins, D.W. Decomposition of tobacco roots with modified phenylpropanoid content by fungi with contrasting lignocellulose degradation strategies. Biol Fertil Soils 49, 305–311 (2013). https://doi.org/10.1007/s00374-012-0720-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-012-0720-3

Keywords

Navigation