Skip to main content
Log in

Some Triangulated Surfaces without Balanced Splitting

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G be the graph of a triangulated surface \(\varSigma \) of genus \(g\ge 2\). A cycle of G is splitting if it cuts \(\varSigma \) into two components, neither of which is homeomorphic to a disk. A splitting cycle has type k if the corresponding components have genera k and \(g-k\). It was conjectured that G contains a splitting cycle (Barnette 1982). We confirm this conjecture for an infinite family of triangulations by complete graphs but give counter-examples to a stronger conjecture (Mohar and Thomassen in Graphs on surfaces. Johns Hopkins studies in the mathematical sciences. Johns Hopkins University Press, Baltimore, 2001) claiming that G should contain splitting cycles of every possible type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Two closed curves are homotopic if one can be continuously deformed into the other.

  2. In the non-orientable case, the left and right orientation should be propagated along the path \((v_0,\dots ,v_{k+1})\).

References

  1. Barnette, D.W., Edelson, A.L.: All orientable 2-manifolds have finitely many minimal triangulations. Israel J. Math. 62(1), 90–98 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnette, D.W., Edelson, A.L.: All 2-manifolds have finitely many minimal triangulations. Isr. J. Math. 67(1), 123–128 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boulch, A., Colin de Verdière, É., Nakamoto, A.: Irreducible triangulations of surfaces with boundary. Graphs Comb. 29(6), 1675–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabello, S., Colin de Verdière, É., Lazarus, F.: Finding cycles with topological properties in embedded graphs. SIAM J. Discret. Math. 25(4), 1600–1614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambers, E., Colin de Verdière, E., Erickson, J., Lazarus, F., Whittlesey, K.: Splitting (complicated) surfaces is hard. In: Proc. 22nd annual Symp. Comput. Geom., ACM, pp. 421–429 (2006)

  6. Ellingham, M.N., Stephens, C.: Triangular embeddings of complete graphs (neighborly maps) with 12 and 13 vertices. J. Comb. Des. 13(5), 336–344 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ellingham, M.N., Zha, X.: Separating cycles in doubly toroidal embeddings. Graphs Comb. 19(2), 161–175 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Grannell, M.J., Knor, M.: On the number of triangular embeddings of complete graphs and complete tripartite graphs. J. Graph Theory 69(4), 370–382 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley, Dover (1987) (reprint 2001 from)

  10. Jennings, D.L.: Separating cycles in triangulations of the double torus. Ph.D. thesis, Vanderbilt University (2003)

  11. Joret, G., Wood, D.R.: Irreducible triangulations are small. J. Comb. Theory, Ser. B 100(5), 446–455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Korzhik, V.P., Voss, H.J.: On the number of nonisomorphic orientable regular embeddings of complete graphs. J. Comb. Theory, Ser. B 81(1), 58–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lawrencenko, S., Negami, S., White, A.T.: Three nonisomorphic triangulations of an orientable surface with the same complete graph. Discret. Math. 135(1), 367–369 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)

    Google Scholar 

  15. Nakamoto, A., Ota, K.: Note on irreducible triangulations of surfaces. J. Graph Theory 20(2), 227–233 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ringel, G.: Map Color Theorem, vol. 209. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  17. Robertson, N., Thomas, R.: On the orientable genus of graphs embedded in the klein bottle. J. Graph Theory 15(4), 407–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stillwell, J.: Classical Topology and Combinatorial Group Theory. Graduate Texts in Mathematics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  19. Sulanke, T.: Generating irreducible triangulations of surfaces (2006). arXiv:math/0606687

  20. Sulanke, T.: Irreducible triangulations of low genus surfaces (2006). arXiv:math/0606690

  21. Zha, X., Zhao, Y.: On non-null separating circuits in embedded graphs. Contemp. Math. 147, 349–362 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thom Sulanke for interesting discussions about his code for generating irreducible triangulations. We are also grateful to the anonymous reviewer for her/his detailed comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Lazarus.

Additional information

This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Despré, V., Lazarus, F. Some Triangulated Surfaces without Balanced Splitting. Graphs and Combinatorics 32, 2339–2353 (2016). https://doi.org/10.1007/s00373-016-1735-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1735-6

Keywords

Mathematics Subject Classification

Navigation