Skip to main content
Log in

Salient object detection in complex scenes via D-S evidence theory based region classification

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In complex scenes, multiple objects are often concealed in cluttered backgrounds. Their saliency is difficult to be detected by using conventional methods, mainly because single color contrast can not shoulder the mission of saliency measure; other image features should be involved in saliency detection to obtain more accurate results. Using Dempster-Shafer (D-S) evidence theory based region classification, a novel method is presented in this paper. In the proposed framework, depth feature information extracted from a coarse map is employed to generate initial feature evidences which indicate the probabilities of regions belonging to foreground or background. Based on the D-S evidence theory, both uncertainty and imprecision are modeled, and the conflicts between different feature evidences are properly resolved. Moreover, the method can automatically determine the mass functions of the two-stage evidence fusion for region classification. According to the classification result and region relevance, a more precise saliency map can then be generated by manifold ranking. To further improve the detection results, a guided filter is utilized to optimize the saliency map. Both qualitative and quantitative evaluations on three publicly challenging benchmark datasets demonstrate that the proposed method outperforms the contrast state-of-the-art methods, especially for detection in complex scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Achanta, R., Hemamiz, S., Estraday, F., et al.: Frequency-tuned salient region detection. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 1597–1604 (2009)

  2. Achanta, R., Shaji, A., Smith, K., et al.: Slic superpixels. Tech. rep. (2010)

  3. Achanta, R., Susstrunk, S.: Saliency detection using maximum symmetric surround. In: 17th IEEE Int. Conf. on image processing (ICIP), pp. 2653–2656 (2010)

  4. Ando, T.: Majorization relations for hadamard products. Linear Algebra Appl. 223–224(1), 57–64 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baghli, I., Nakib, A., Sellam, E., et al.: Hybrid framework based on evidence theory for blood cell image segmentation. Proc. SPIE Int. Soc. Opt. Eng. 9038(3), 252–260 (2014)

    Google Scholar 

  6. Bhattacharya, A., Saraswat, V.K., Manimaran, P., et al.: Evidence theoretic classification of ballistic missiles. Appl. Soft Comput. 37, 479–489 (2015)

    Article  Google Scholar 

  7. Chen, Y., Chan, A.B., Wang, G.: Adaptive figure-ground classification. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 654–661 (2012)

  8. Cheng, M.M., Mitra, N.J., Huang, X., et al.: Salientshape: group saliency in image collections. Vis. Comput. 30(4), 443–453 (2014)

    Article  Google Scholar 

  9. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MATH  Google Scholar 

  10. Dong, G., Kuang, G.: Target recognition via information aggregation through dempstershafer’s evidence theory. Geosci. Remote Sens. Lett. IEEE 12(6), 1247–1251 (2015)

    Article  Google Scholar 

  11. Fan, Q., Qi, C.: Two-stage salient region detection by exploiting multiple priors. J. Vis. Commun. Image Represent. 25(8), 1823–1834 (2014)

    Article  Google Scholar 

  12. Frintrop, S., Werner, T., Martin Garcia, G.: Traditional saliency reloaded: a good old model in new shape. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 82–90 (2015)

  13. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1915–1926 (2012)

    Article  Google Scholar 

  14. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Adv. Neural Inf. Process. Syst. 19, 545–552 (2006)

    Google Scholar 

  15. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 1–8 (2007)

  16. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  17. Jiang, H., Wang, J., Yuan, Z., et al.: Salient object detection: a discriminative regional feature integration approach. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 2083–2090. IEEE (2013)

  18. Kaiming, H., Jian, S., Xiaoou, T.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(16), 1397–1409 (2013)

    Google Scholar 

  19. Li, B.C., Wang, B., Wei, J., et al.: An efficient combination rule of evidence theory. J. Data Acquis. Process. (in Chinese) 1, 33–36 (2002)

    Google Scholar 

  20. Li, Y., Hou, X., Koch, C., et al.: The secrets of salient object segmentation. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 280–287 (2014)

  21. Liang, L., Yuanlu, X., Xiaodan, L., et al.: Complex background subtraction by pursuing dynamic spatio-temporal models. IEEE Trans. Image Process. 23(7), 3191–3202 (2014)

    Article  MathSciNet  Google Scholar 

  22. Lin, T.C.: Decision-based filter based on svm and evidence theory for image noise removal. Neural Comput. Appl. 21(4), 695–703 (2012)

    Article  Google Scholar 

  23. Lu, Y.: Learning attention map from images. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 1067–1074 (2012)

  24. Margolin, R., Tal, A., Zelnik-Manor, L.: What makes a patch distinct? In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 1139–1146. IEEE, Portland (2013)

  25. Margolin, R., Zelnik-Manor, L., Tal, A.: Saliency for image manipulation. Vis.Comput. 29(5), 381–392 (2013)

    Article  Google Scholar 

  26. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 733–740. IEEE, Providence, RI (2012)

  27. Qiu, Y., Sun, X., She, M.F.: Saliency detection using hierarchical manifold learning. Neurocomputing 168, 538–549 (2015)

    Article  Google Scholar 

  28. Scharfenberger, C., Wong, A., Fergani, K., et al.: Statistical textural distinctiveness for salient region detection in natural images. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 979–986. IEEE, Portland (2013)

  29. Shafer, G.: A mathematical theory of evidence. Technometrics 20(1), 242 (1978)

    Google Scholar 

  30. Sharon, A., Meirav, G., Achi, B., et al.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 1–8 (2007)

    Google Scholar 

  31. Shi, J., Yan, Q., Xu, L., et al.: Hierarchical image saliency detection on extended cssd. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 1 (2014)

    Google Scholar 

  32. Shi, K., Wang, K., Lu, J., et al.: Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with spatial priors. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 2115–2122. IEEE, Portland (2013)

  33. Shi, Y., Yi, Y., Yan, H., et al.: Region contrast and supervised locality-preserving projection-based saliency detection. Vis. Comput. 31(9), 1191–1205 (2015)

    Article  Google Scholar 

  34. Song, M., Chen, C., Wang, S., et al.: Low-level and high-level prior learning for visual saliency estimation. Inf. Sci. 281, 573–585 (2014)

    Article  Google Scholar 

  35. Sun, Q., Ye, X.Q., Gu, W.K.: A new combination rules of evidence theory. Chin. J. Electron. 28(8), 116–119 (2000)

    Google Scholar 

  36. Tang, H., Chen, C., Bie, Y.: Prediction of human eye fixation by a single filter. J. Signal Process. Syst., 1–6 (2016). doi:10.1007/s11265-016-1131-8

  37. Tang, R.D., Yu, C.R., Qian, S.H., et al.: Saliency detection integrated with depth information. In: Int. Conf. on computer information systems and industrial applications (CISIA), ACSR-Advances in comptuer science research, vol. 18, pp. 663–665 (2015)

  38. Tilke, J., Ehinger, K., Durand, F., et al.: Learning to predict where humans look. In: IEEE Int. Conf. on computer vision (ICCV), pp. 2106–2113 (2009)

  39. Tong, N., Lu, H., Xiang, R., et al.: Salient object detection via bootstrap learning. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 1884–1892 (2015)

  40. Tong, N., Lu, H., Zhang, L., et al.: Saliency detection with multi-scale superpixels. IEEE Signal Process. Lett. 21(9), 1035–1039 (2014)

    Article  Google Scholar 

  41. Wang, X., Zhang, L., Lin, L., et al.: Deep joint task learning for generic object extraction. Adv. Neural Inf. Process. Syst., 523–531 (2015). arXiv preprint arXiv:1502.00743

  42. Wei, Y., Wen, F., Zhu, W., et al.: Geodesic saliency using background priors. In: European conference on computer vision, pp. 29–42 (2012)

  43. Xu, M., Zhang, H.: Saliency detection with color contrast based on boundary information and neighbors. Vis. Comput. 31(3), 355–364 (2015)

    Article  MathSciNet  Google Scholar 

  44. Yang, C., Zhang, L., Lu, H.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  45. Yang, C., Zhang, L., Lu, H., et al.: Saliency detection via graph-based manifold ranking. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 3166–3173 (2013)

  46. Ye, Q., Wu, X.P., Song, Y.X.: Evidence combination method based on the weight coefficients and the confliction probability distribution. Syst. Eng. Electron. (in Chinese) 28(7), 1014–1016 (2006)

    MATH  Google Scholar 

  47. Yu, H., Li, J., Tian, Y., et al.: Automatic interesting object extraction from images using complementary saliency maps. In: Proc. ACM Int. Conf. on multimedia, pp. 891–894. ACM, New York (2010)

  48. Zadeh, L.A.: A simple view of the dempster-shafer theory of evidence and its implication for the rule of combination. AI Mag. 7(2), 85–90 (1986)

    Google Scholar 

  49. Zhang, Y., Mao, Z., Li, J., et al.: Salient region detection for complex background images using integrated features. Inf. Sci. 281, 586–600 (2014)

    Article  Google Scholar 

  50. Zhu, S.S., Yung, N.H.C.: Sub-scene generation: a step towards complex scene understanding. In: IEEE Int. Conf. on multimedia, pp. 1–6 (2011)

  51. Zhu, W., Liang, S., Wei, Y., et al.: Saliency optimization from robust background detection. In: IEEE Conf. on computer vision and pattern recognition (CVPR), pp. 2814–2821 (2014)

Download references

Acknowledgments

This work was supported in part by the International S & T Cooperation Program of China (No. 2011DFR10480), the Natural Science Foundation of China (No. 61301230), and the Key Project of Science and Technology of Henan (No. 142107000021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiexin Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Pu, J., Dong, Y. et al. Salient object detection in complex scenes via D-S evidence theory based region classification. Vis Comput 33, 1415–1428 (2017). https://doi.org/10.1007/s00371-016-1288-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-016-1288-y

Keywords

Navigation