Skip to main content
Log in

Geodesic bifurcation on smooth surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Within Riemannian geometry the geodesic exponential map is an essential tool for various distance-related investigations and computations. Several natural questions can be formulated in terms of its preimages, usually leading to quite challenging non-linear problems. In this context we recently proposed an approach for computing multiple geodesics connecting two arbitrary points on two-dimensional surfaces in situations where an ambiguity of these connecting geodesics is indicated by the presence of focal curves. The essence of the approach consists in exploiting the structure of the associated focal curve and using a suitable curve for a homotopy algorithm to collect the geodesic connections. In this follow-up discussion we extend those constructions to overcome a significant limitation inherent in the previous method, i.e. the necessity to construct homotopy curves artificially. We show that considering homotopy curves meeting a focal curve tangentially leads to a singularity that we investigate thoroughly. Solving this so-called geodesic bifurcation analytically and dealing with it numerically provides not only theoretical insights, but also allows geodesics to be used as homotopy curves. This yields a stable computational tool in the context of computing distances. This is applicable in common situations where there is a curvature induced non-injectivity of the exponential map. In particular we illustrate how applying geodesic bifurcation approaches the distance problem on compact manifolds with a single closed focal curve. Furthermore, the presented investigations provide natural initial values for computing cut loci using the medial differential equation which directly leads to a discussion on avoiding redundant computations by combining the presented concepts to determine branching points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., Raiu, T.S., Cushman, R.: Foundations of mechanics. Benjamin/Cummings Publishing Company Reading, Massachusetts (1978)

    MATH  Google Scholar 

  2. Allgower, E.L., Georg, K.: Numerical continuation methods. Springer (1990)

  3. do Carmo.: Riemannian Geometry. Birkhauser (1992)

  4. De Berg, M., Cheong, O., Van Kreveld, M., et al.: Computational geometry: algorithms and applications. Springer (2008)

  5. Dey, T.K., Li, K.: Cut locus and topology from surface point data. In: Proceedings of the 25th annual symposium on computational geometry, pp. 125–134 (2009)

  6. Dey, T.K., Zhao, W.: Approximating the medial axis from the voronoi diagram with a convergence guarantee. Algorithmica 38(1), 179–200 (2003)

    Article  MathSciNet  Google Scholar 

  7. Garcia, C., Zangwill, W.: Pathways to solutions, fixed points, and equilibria. Prentice, Englewood Cliffs (1981)

    MATH  Google Scholar 

  8. Itoh, J.I., Kiyohara, K.: The cut loci and the conjugate loci on ellipsoids. Manuscr. Math. 114(2), 247–264 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Itoh, J.I., Sinclair, R.: Thaw: a tool for approximating cut loci on a triangulation of a surface. Exp. Math. 13(3), 309–325 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95(15), 8431 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kunze, R., Wolter, F.-E., Rausch, T.: Geodesic voronoi diagrams on parametric surfaces. In: CGI, pp. 230–237 (1997)

  12. Landau, L., Lifshitz, E.: Mechanics. 3rd edn. Buttersworth-Heinemann (2003)

  13. Leibon, G., Letscher, D.: Delaunay triangulations and voronoi diagrams for riemannian manifolds. In: Proceedings of the sixteenth annual symposium on computational geometry, pp. 341–349. ACM (2000)

  14. Liu, Y.J.: Exact geodesic metric in 2-manifold triangle meshes using edge-based data structures. Computer-Aided Design (2012).

  15. Liu, Y.J., Tang, K.: The complexity of geodesic voronoi diagrams on triangulated 2-manifold surfaces. Inf. Process. Lett. (2013)

  16. Misztal, M.K., Bærentzen, J.A., Anton, F., et al.: Cut locus construction using deformable simplicial complexes. In: Voronoi diagrams in science and engineering, pp. 134–141. IEEE (2011)

  17. Myers, S.B., et al.: Connections between differential geometry and topology. i. Simply connected surfaces. Duke Math. J. 1(3), 376–391 (1935)

    Article  MathSciNet  Google Scholar 

  18. Myers, S.B., et al.: Connections between differential geometry and topology ii. Closed surfaces. Duke Math. J. 2(1), 95–102 (1936)

    Article  MathSciNet  Google Scholar 

  19. Naß, H.: Computation of medial sets in Riemannian manifolds. Ph.D. thesis, LUH (2007)

  20. Naß, H., Wolter, F.-E., Dogan, C., et al.: Medial axis inverse transform in complete 3-dimensional Riemannian manifolds. In: cyberworlds, pp. 386–395 (2007)

  21. Naß, H., Wolter, F.-E., Thielhelm, H., et al.: Computation of geodesic Voronoi diagrams in 3-space using medial equations. In: cyberworlds, pp. 376–385 (2007)

  22. Neel, R., Stroock, D.: Analysis of the cut locus via the heat kernel. Surv. Diff. Geom. 9, 337–349 (2004)

    Article  MathSciNet  Google Scholar 

  23. Onishi, K., Itoh, J.I.: Estimation of the necessary number of points in riemannian voronoi diagram. In: Proceedings of 15th Canadian conference computer geometry, pp. 19–24 (2003)

  24. Patrikalakis, N.M., Maekawa, T.: Shape interrogation for computer aided design and manufacturing. Springer (2002)

  25. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. ACM (2006)

  26. Rausch, T.: Untersuchungen und Berechnungen zur Medialen Achse bei Berandeten Flächenstücken. Ph.D. thesis, Leibniz Universität Hannover (1999)

  27. Rausch, T., Wolter, F.-E., Sniehotta, O.: Computation of medial curves in surfaces. Math. Surf. 7, 43–68 (1996)

    Google Scholar 

  28. Sakai, T.: Riemannian geometry, vol. 149. American Mathematical Society (1996)

  29. Savage, L.: On the crossing of extremals at focal points. Bull. Am. Math. Soc. 49(6), 467–469 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sinclair, R., Tanaka, M.: Loki: software for computing cut loci. Exp. Math. 11(1), 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sinclair, R., Tanaka, M.: Jacobi’s last geometric statement extends to a wider class of liouville surfaces. Mathematics of computation pp. 1779–1808 (2006)

  32. Stam, J.: Exact evaluation of catmull-lark subdivision surfaces at arbitrary parameter values. In: computer graphics and interactive techniques, pp. 395–404 (1998)

  33. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: ACM TOG, vol. 24, pp. 553–560. ACM (2005)

  34. Thielhelm, H., Vais, A., Brandes, D., et al.: Connecting geodesics on smooth surfaces. The visual computer pp. 1–11 (2012)

  35. Wolter, F.-E.: Distance function and cut Loci on a complete Riemannian manifold. Arch. Math. 32, 92–96 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wolter, F.-E.: Cut Loci in bordered and unbordered Riemannian manifolds. Ph.D. thesis, TU Berlin (1985)

  37. Wolter, F.-E.: Cut Locus and medial axis in global shape interrogation and representation. In: MIT design laboratory memorandum 92–2 (1992)

  38. Wolter, F.-E., Blanke, P., Thielhelm, H., Vais, A.: Computational differential geometry contributions of thewelfenlab to grk 615. In: modelling, simulation and software concepts for scientific-technological problems, pp. 211–235, Springer (2011)

  39. Wolter, F.-E., Friese, K.-I.: Local and global geometric methods for analysis interrogation, reconstruction, modification and design of shape. In: CGI, pp. 137–151 (2000)

Download references

Acknowledgments

This research was partially supported by a Deutsche Forschungsgemeinschaft (DFG) Grant within the Graduiertenkolleg 615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Thielhelm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thielhelm, H., Vais, A. & Wolter, FE. Geodesic bifurcation on smooth surfaces. Vis Comput 31, 187–204 (2015). https://doi.org/10.1007/s00371-014-1041-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1041-3

Keywords

Navigation