The Visual Computer

, Volume 31, Issue 5, pp 733–746

Automatic blur-kernel-size estimation for motion deblurring

  • Shaoguo Liu
  • Haibo Wang
  • Jue Wang
  • Sunghyun Cho
  • Chunhong Pan
Original Article

DOI: 10.1007/s00371-014-0998-2

Cite this article as:
Liu, S., Wang, H., Wang, J. et al. Vis Comput (2015) 31: 733. doi:10.1007/s00371-014-0998-2

Abstract

Existing image deblurring approaches often take the blur-kernel-size as an important manual parameter. When set improperly, this parameter can lead to significant errors in the estimated blur kernels. However, manually specifying a proper kernel size for an input image is usually a tedious trial-and-error process. In this paper, we propose a new approach for automatically estimating the underlying blur-kernel-size value that can lead to good kernel estimation. Our approach takes advantage of the autocorrelation map (automap) of image gradients that is known to reflect the motion blur information. We show that the standard automap suffers from structural edges in the image and cannot be directly used for kernel size estimation. To alleviate this problem, we develop a modified automap method that contains a directional attenuation component, which can effectively reduce the influence of structural edges, leading to more accurate and reliable kernel size estimation. Experimental results suggest that the proposed approach can help state-of-the-art deblurring algorithms achieve accurate kernel estimation without relying on manual parameter tweaking.

Keywords

Image deblurring Blur-kernel-size Motion blur prior Autocorrelation Directional attenuation 

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shaoguo Liu
    • 1
  • Haibo Wang
    • 2
  • Jue Wang
    • 3
  • Sunghyun Cho
    • 3
  • Chunhong Pan
    • 1
  1. 1.NLPR, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina
  3. 3.Adobe ResearchSeattleUSA