Skip to main content
Log in

A response time model for abrupt changes in binocular disparity

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a novel depth perception model to determine the time taken by the human visual system (HVS) to adapt to an abrupt change in stereoscopic disparity, such as can occur in a scene cut. A series of carefully designed perceptual experiments on successive disparity contrast were used to build our model. Factors such as disparity, changes in disparity, and the spatial frequency of luminance contrast were taken into account. We further give a computational method to predict the response time during scene cuts in stereoscopic cinematography, which has been validated in user studies. We also consider various applications of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Akeley, K., Watt, S.J., Girshick, A.R., Banks, M.S.: A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23(3), 804–813 (2004)

    Article  Google Scholar 

  2. Basha, T., Moses, Y., Avidan, S.: Geometrically Consistent Stereo Seam Carving. In: ICCV, pp. 1816–1823 (2011)

  3. Burt, P., Julesz, B.: A disparity gradient limit for binocular fusion. Science 208, 615–617 (1980)

    Article  Google Scholar 

  4. Celikcan, U., Cimen, G., Kevinc, E.B., Capin, T.: Attention-aware disparity control in interactive environments. Vis. Comput. 29(6–8), 685–694 (2013)

    Article  Google Scholar 

  5. Chang, C.H., Liang, C.K., Chuang, Y.Y.: Content-aware display adaptation and interactive editing for stereoscopic images. IEEE Trans. Multimedia 13(4), 589–601 (2011)

    Article  Google Scholar 

  6. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global Contrast Based Salient Region Detection. In: IEEE CVPR, pp. 409–416 (2011)

  7. Choi, J., Kim, D., Choi, S., Sohn, K.: Visual fatigue modeling and analysis for stereoscopic video. Opt. Eng. 51(1), 017206-1–017206–11 (2012)

  8. Choi, J., Kim, D., Ham, B., Choi, S., Sohn, K.: Visual Fatigue Evaluation and Enhancement for 2d-plus-depth Video. In: IEEE ICIP, pp. 2981–2984 (2010)

  9. Cumming, B.G., Judge, S.J.: Disparity-induced and blur-induced convergence eye movement and accommodation in the monkey. J. Neurophysiol. 55(5), 896–914 (1986)

    Google Scholar 

  10. Dahan, M.J., Chen, N., Shamir, A., Cohen-Or, D.: Combining color and depth for enhanced image segmentation and retargeting. Vis. Comput. 28(12), 1181–1193 (2012)

    Article  Google Scholar 

  11. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., Seidel, H.P.: A perceptual model for disparity. ACM Trans. Graph. 30(4), 96:1–96:10 (2011)

    Article  Google Scholar 

  12. Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., Seidel, H.P., Matusik, W.: A luminance-contrast-aware disparity model and applications. ACM Trans. Graph. 31(6), 184:1–184:10 (2012)

    Article  Google Scholar 

  13. Du, S.P., Hu, S.M., Martin, R.: Changing perspective in stereoscopic images. IEEE Trans. Vis. Comput. Graph. 19(8), 1288–1297 (2013)

    Article  Google Scholar 

  14. Du, S.P., Masia, B., Hu, S.M., Gutierrez, D.: A metric of visual comfort for stereoscopic motion. ACM Trans. Graph. 32(6), 222:1–222:9 (2013)

    Article  Google Scholar 

  15. Emoto, M., Niida, T., Okano, F.: Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television. J. Disp. Technol. 1(2), 328–340 (2005)

    Article  Google Scholar 

  16. Erkelens, C.J., Regan, D.: Human ocular vergence movements induced by changing size and disparity. J. Physiol. 379, 145–169 (1986)

    Article  Google Scholar 

  17. Erkelens, C.J., Steinman, R.M., Collewijn, H.: Ocular vergence under natural conditions. II. Gaze shifts between real targets differing in distance and direction. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. R Soc (Great Britain) 236(1285), 441–465 (1989)

    Google Scholar 

  18. Heinzle, S., Greisen, P., Gallup, D., Chen, C., Saner, D., Smolic, A., Burg, A., Matusik, W., Gross, M.: Computational stereo camera system with programmable control loop. ACM Trans. Graph. 30(4), 94:1–94:10 (2011)

    Article  Google Scholar 

  19. Hess, R.F., Kingdom, F.A., Ziegler, L.R.: On the relationship between the spatial channels for luminance and disparity processing. Vis. Res. 39(3), 559–568 (1999)

    Article  Google Scholar 

  20. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33:1–33:30 (2008)

    Article  Google Scholar 

  21. Howard, I.P., Rogers, B.J.: Perceiving in Depth. Volume 2: Stereoscopic Vision. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  22. Hu, S.M., Chen, T., Xu, K., Cheng, M.M., Martin, R.R.: Internet visual media processing: a survey with graphics and vision applications. Vis. Comput. 29(5), 393–405 (2013)

    Article  Google Scholar 

  23. Hulusic, V., Debattista, K., Chalmers, A.: Smoothness perception. Vis. Comput. 29(11), 1159–1172 (2013)

    Article  Google Scholar 

  24. Ide, S., Yamanoue, H., Okui, M., Okano, F., Bitou, M., Terashima, N.: Parallax distribution for ease of viewing in stereoscopic hdtv. SPIE 4660, 38–45 (2002)

    Google Scholar 

  25. Inoue, T., Ohzu, H.: Accommodative responses to stereoscopic three-dimensional display. Appl. Opt. 36(19), 4509–4515 (1997)

    Article  Google Scholar 

  26. Kim, D., Sohn, K.: Visual fatigue prediction for stereoscopic image. IEEE Trans. Circ. Syst. Video Technol. 21(2), 231–236 (2011)

    Article  Google Scholar 

  27. Lambooij, M.T.M., IJsselsteijn, W.A., Heynderickx, I.: Visual discomfort and visual fatigue of stereoscopic displays: a review. J. Imaging Technol. Sci. 53(3), 1–14 (2009)

    Article  Google Scholar 

  28. Lang, M., Hornung, A., Wang, O., Poulakos, S., Smolic, A., Gross, M.: Nonlinear disparity mapping for stereoscopic 3d. ACM Trans. Graph. 29(4), 75:1–75:10 (2010)

    Article  Google Scholar 

  29. Lee, B., Rogers, B.: Disparity modulation sensitivity for narrow-band-filtered stereograms. Vis. Res. 37(13), 1769–1777 (1997)

    Article  Google Scholar 

  30. Lee, K.Y., Chung, C.D., Chuang, Y.Y.: Scene warping: layer-based stereoscopic image resizing. In: IEEE CVPR, pp. 49–56 (2012)

  31. Lee, S., Kim, Y., Lee, J., Kim, K., Lee, K., Noh, J.: Depth manipulation using disparity histogram analysis for stereoscopic 3d. Vis. Comput. 30(4), 455–465 (2014)

    Article  Google Scholar 

  32. Liao, M., Gao, J., Yang, R., Gong, M.: Video stereolization: combining motion analysis with user interaction. IEEE Trans. Vis. Comput. Graph. 18(7), 1079–1088 (2012)

    Article  Google Scholar 

  33. Liu, C.W., Huang, T.H., Chang, M.H., Lee, K.Y., Liang, C.K., Chuang, Y.Y.: 3d cinematography principles and their applications to stereoscopic media processing. In: ACM Multimedia, pp. 253–262 (2011)

  34. Lo, W.Y., van Baar, J., Knaus, C., Zwicker, M., Gross, M.: Stereoscopic 3d copy and paste. ACM Trans. Graph. 29(6), 147:1–147:10 (2010)

    Article  Google Scholar 

  35. Luo, S.J., Shen, I.C., Chen, B.Y., Cheng, W.H., Chuang, Y.Y.: Perspective-aware warping for seamless stereoscopic image cloning. ACM Trans. Graph. 31(6), 182:1–182:8 (2012)

    Google Scholar 

  36. Marr, D., Poggio, T.: A computational theory of human stereo vision. Proceedings of the Royal Society of London. Ser B Biol Sci 204(1156), 301–328 (1979)

    Article  Google Scholar 

  37. Masia, B., Wetzstein, G., Aliaga, C., Raskar, R., Gutierrez, D.: Display adaptive 3d content remapping. Comput. Graph. 37(8), 983–996 (2013)

    Article  Google Scholar 

  38. Mendiburu, B.: 3D Movie Making: Stereoscopic Digital Cinema from Script to Screen. Focal Press, England (2009)

    Google Scholar 

  39. Mu, T.J., Wang, J.H., Du, S.P., Hu, S.M.: Stereoscopic image completion and depth recovery. Vis. Comput. 30(6–8), 833–843 (2014)

  40. Neri, P., Bridge, H., Heeger, D.J.: Stereoscopic processing of absolute and relative disparity in human visual cortex. J. Neurophysiol. 92(3), 1880–1891 (2004)

    Article  Google Scholar 

  41. Niu, Y., Feng, W.C., Liu, F.: Enabling warping on stereoscopic images. ACM Trans. Graph. 31(6), 183:1–183:7 (2012)

    Article  Google Scholar 

  42. Oskam, T., Hornung, A., Bowles, H., Mitchell, K., Gross, M.: Oscam—optimized stereoscopic camera control for interactive 3d. ACM Trans. Graph. 30(6), 189:1–189:8 (2011)

    Article  Google Scholar 

  43. Palmer, S.E.: Vision Science: Photons to Phenomenology. The MIT Press, Cambridge (1999)

    Google Scholar 

  44. Pan, B., Zhao, Y., Guo, X., Chen, X., Chen, W., Peng, Q.: Perception-motivated visualization for 3d city scenes. Vis. Comput. 29(4), 277–289 (2013)

    Article  Google Scholar 

  45. Pollock, B., Burton, M., Kelly, J., Gilbert, S., Winer, E.: The right view from the wrong location: depth perception in stereoscopic multi-user virtual environments. IEEE Trans. Vis. Comput. Graph. 18(4), 581–588 (2012)

    Article  Google Scholar 

  46. Rashbass, C., Westheimer, G.: Disjunctive eye movements. J. Physiol. 159(2), 339–360 (1961)

    Article  Google Scholar 

  47. Schor, C.M.: A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses. Optom. Vis. Sci. 69(4), 258–269 (1992)

    Article  Google Scholar 

  48. Schor, C.M.: The influence of interactions between accommodation and convergence on the lag of accommodation. Ophthal. Physiol. Opt. 19(2), 134–150 (1999)

    Article  Google Scholar 

  49. Schor, C.M., Kotulak, J.C.: Dynamic interactions between accommodation and convergence are velocity sensitive. Vis. Res. 26(6), 927–942 (1986)

    Article  Google Scholar 

  50. Shibata, T., Kim, J., Hoffman, D.M., Banks, M.S.: The zone of comfort: predicting visual discomfort with stereo displays. J. Vis. 11(8), 11:1–11:29 (2011)

    Article  Google Scholar 

  51. Smith, B.M., Li, Z., Jin, H.: Stereo Matching with Nonparametric Smoothness Priors in Feature Space. In: IEEE CVPR, pp. 485–492 (2009)

  52. Takagi, M., Oyamada, H., Abe, H., Zee, D.S., Hasebe, H., Miki, A., Usui, T., Bando, T.: Adaptive changes in dynamic properties of human disparity-induced vergence. Invest. Ophthalmol. Vis. Sci. 42(7), 1479–1486 (2001)

    Google Scholar 

  53. Tong, R.F., Zhang, Y., Cheng, K.L.: Stereopasting: interactive composition in stereoscopic images. IEEE Trans. Vis. Comput. Graph. 19(8), 1375–1385 (2013)

    Article  Google Scholar 

  54. Yang, S., Gowrisankaran, S., Younkin, A.C., Corriveau, P.J., Sheedy, J.E., Hayes, J.R.: Discernible difference and change in object depth afforded by stereoscopic three-dimensional content. In: SPIE, vol. 8648, pp. 86481C–86481C–11 (2013)

  55. Yong, J.J., Lee, S.I., Sohn, H., Hyun, W.P., Yong, M.R.: Visual comfort assessment metric based on salient object motion information in stereoscopic video. J. Electron. Imaging 21(1), 011008-1–011008-16 (2012)

  56. Zhang, G., Hua, W., Qin, X., Wong, T.T., Bao, H.: Stereoscopic video synthesis from a monocular video. IEEE Trans. Vis. Comput. Graph. 13(4), 686–696 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments. This work was supported by the National Basic Research Project of China (No. 2011CB302205), the Natural Science Foundation of China (No. 61272226 and 61120106007), the National High Technology Research and Development Program of China (No. 2013AA013903) and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Min Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, TJ., Sun, JJ., Martin, R.R. et al. A response time model for abrupt changes in binocular disparity. Vis Comput 31, 675–687 (2015). https://doi.org/10.1007/s00371-014-0994-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0994-6

Keywords

Navigation