Skip to main content
Log in

Connecting geodesics on smooth surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present a novel method for computing multiple geodesic connections between two arbitrary points on a smooth surface. Our method is based on a homotopy approach that is able to capture the ambiguity of geodesic connections in the presence of positive Gaussian curvature that generates focal curves.

Contrary to previous approaches, we exploit focal curves to gain theoretical insights on the number of connecting geodesics and a practical algorithm for collecting these.

We consider our method as a contribution to the contemporary debate regarding the calculation of distances in general situations, applying continuous concepts of classical differential geometry which are not immediately transferable in purely discrete settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  2. Bauer, E.: Geodesics as minima of general variation problems and their applications. Diploma thesis, Leibniz Universität Hannover (2010)

  3. Blaschke, W., Leichtweiß, K.: Elementare Differentialgeometrie. Springer, Berlin (1973)

    MATH  Google Scholar 

  4. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    MATH  Google Scholar 

  5. Kimmel, R., Sethian, J.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kunze, R., Wolter, F.-E., Rausch, T.: Geodesic Voronoi diagrams on parametric surfaces. In: CGI, pp. 230–237 (1997)

    Google Scholar 

  7. Meyer, M., Desbrun, M., et al.: Discrete differential geometry operators for triangulated 2-manifolds. In: Visualization and Mathematics, vol. 3, pp. 34–57 (2002)

    Google Scholar 

  8. Naß, H.: Computation of medial sets in Riemannian manifolds. Ph.D. thesis, Leibniz Universität Hannover (2007)

  9. Naß, H., Wolter, F.-E., Dogan, C., Thielhelm, H.: Medial axis inverse transform in complete 3-dimensional Riemannian manifolds. In: Cyberworlds, pp. 386–395 (2007)

    Google Scholar 

  10. Naß, H., Wolter, F.-E., Thielhelm, H., Dogan, C.: Computation of geodesic Voronoi diagrams in 3-space using medial equations. In: Cyberworlds, pp. 376–385 (2007)

    Google Scholar 

  11. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Mathematical Visualization (1998)

    Google Scholar 

  12. Rausch, T.: Untersuchungen und Berechnungen zur Medialen Achse bei Berandeten Flächenstücken. Ph.D. thesis, Leibniz Universität Hannover (1999)

  13. Rausch, T., Wolter, F.-E., Sniehotta, O.: Computation of medial curves in surfaces. In: Mathematics of Surfaces, vol. 7, pp. 43–68 (1997)

    Google Scholar 

  14. Savage, L.: On the crossing of extremals at focal points. Bull. Am. Math. Soc. 49(6), 467–469 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schmidt, R., Grimm, C., Wyvill, B.: Interactive decal compositing with discrete exponential maps. ACM Trans. Graph. 25(3), 605–613 (2006)

    Article  Google Scholar 

  16. Stam, J.: Exact evaluation of Catmull–Clark subdivision surfaces at arbitrary parameter values. In: Computer Graphics and Interactive Techniques, pp. 395–404 (1998)

    Google Scholar 

  17. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24(3), 553–560 (2005)

    Article  Google Scholar 

  18. Wolter, F.-E.: Interior metric, shortest paths and loops in Riemannian manifolds with not necessarily smooth boundary. Diploma thesis, FU Berlin (1979)

  19. Wolter, F.-E.: Distance function and cut loci on a complete Riemannian manifold. Arch. Math. 32, 92–96 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wolter, F.-E.: Cut loci in bordered and unbordered Riemannian manifolds. Ph.D. thesis, TU Berlin (1985)

  21. Wolter, F.-E.: Cut locus and medial axis in global shape interrogation and representation. MIT Design Laboratory Memorandum 92(2) (1992)

  22. Wolter, F.-E., Friese, K.-I.: Local and global geometric methods for analysis interrogation, reconstruction, modification and design of shape. In: CGI, pp. 137–151 (2000)

    Google Scholar 

  23. Wolter, F.-E., Blanke, P., Thielhelm, H., Vais, A.: Computational differential geometry contributions of the Welfenlab to GRK 615. In: LNACM, vol. 57, pp. 211–236. Springer, Berlin (2011)

    Google Scholar 

  24. Ying, L., Zorin, D.: A simple manifold-based construction of surfaces of arbitrary smoothness. ACM Trans. Graph. 23(3), 271–275 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Thielhelm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thielhelm, H., Vais, A., Brandes, D. et al. Connecting geodesics on smooth surfaces. Vis Comput 28, 529–539 (2012). https://doi.org/10.1007/s00371-012-0681-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0681-4

Keywords

Navigation